MICHAIŁ SZYDŁOWSKI

MODELLOWANIE
FAL POWODZIOWYCH
NA TERENACH ZABUDOWANYCH

POLITECHNIKA GDAŃSKA

monografie
86
POLITECHNIKA GDAŃSKA

MICHAŁ SZYDŁOWSKI

MODELOWANIE
FAL POWODZIOWYCH
NA TERENACH ZABUDOWANYCH

GDAŃSK 2007
PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO
WYDAWNICTWA POLITECHNIKI GDANSKIEJ
Romuald Szymkiewicz

REDAKTOR PUBLIKACJI NAUKOWYCH
Janusz T. Cieśliński

REDAKTOR SERII
Jerzy M. Sawicki

RECENZENCI
Kazimierz Burzyński
Janusz Kubrak

PROJEKT OKŁADKI
Jolanta Cieślawska

Wydano za zgodą
Rektora Politechniki Gdańskiej

Oferta wydawnicza Politechniki Gdańskiej jest dostępna pod adresem
http://www.pg.edu.pl/wydawnictwo/katalog
zamówienia prosimy kierować na adres wydaw@pg.gda.pl

© Copyright by Wydawnictwo Politechniki Gdańskiej
Gdańsk 2007

Utwór nie może być powielany i rozpowszechniany, w jakiejkolwiek formie
i w jakikolwiek sposób, bez pisemnej zgody wydawcy

Wykaz ważniejszych oznaczeń .. 5

1. WPROWADZENIE ... 7

2. CEL, ZAKRES I STRUKTURA PRACY ... 8

3. CHARAKTERYSTYKA POWODZI MIEJSKICH ... 11
 3.1. Miasta a woda ... 12
 3.2. Przepływ wód opadowych w mieście .. 14
 3.3. Skutki powodzi .. 14

4. STAN WIEDZY O MATEMATYCZNYM MODELOWANIU PRZEPŁYWÓW POWODZIOWYCH ... 17
 4.1. Modelowanie propagacji fal wezbraniowej w ciekach i naturalnych dolinach rzek .. 17
 4.1.1. Modele matematyczne .. 18
 4.1.2. Metody rozwiązywania równań przepływu wody płynnej ... 21
 4.2. Modelowanie przepływu wód przez obszary zabudowane ... 23

5. MODEL PRZEPŁYWU WODY PO TERENIE ZABUDOWANYM .. 26
 5.1. Równania dwuwymiarowego przepływu wody płynnej ... 26
 5.2. Numeryczne rozwiązanie równań przepływu wody płynnej ... 28
 5.2.1. Dyskretyzacja równań w przestrzeni metodą objętości skończonych ... 28
 5.2.2. Całkowanie równań w czasie .. 33
 5.2.3. Uwzględnienie warunków granicznych ... 34

6. LABORATORYJNE I NUMERYCZNE BADANIA PRZEPŁYWU WODY NA TERENIE ZABUDOWANYM 37
 6.1. Badania przepływu wody na terenie zabudowanym w laboratorium hydraulicznym ENEL-CESI 37
 6.2. Badania przepływu wody na terenie zabudowanym w laboratorium hydraulicznym Politechniki Gdańskiej ... 42
 6.2.1. Opis stanowiska pomiarowego i metodyki pomiarów ... 42
 6.2.2. Przebieg eksperymentu ... 47
 6.2.3. Analiza błędów i niepewności pomiarów .. 47
 6.2.4. Zakres badań ... 50
 6.2.5. Eksperyment E01 – przepływ przez obszar bez zabudowy ... 52

6.3. Porównanie wyników obliczeń numerycznych z pomiarami ... 54
 6.3.1. Eksperyment E02 – opływ pojedynczego budynku ustawionego prostopadle do osi wyrwy w wale ... 57
 6.3.2. Eksperyment E03 – opływ pojedynczego budynku ustawionego ukośnie do osi wyrwy w wale 65
 6.3.3. Eksperyment E04 – przepływ przez obszar z budynkami w układzie szeregowym 74
 6.3.4. Eksperyment E05 – przepływ przez obszar z budynkami w układzie szachownicę 82
 6.3.5. Eksperyment E06 – przepływ przez obszar z budynkami ustawionymi ukośnie do osi wyrwy w wale (wersja 1) ... 90
 6.3.6. Eksperyment E07 – przepływ przez obszar z budynkami ustawionymi ukośnie do osi wyrwy w wale (wersja 2) .. 98
 6.3.7. Eksperymenty E08 i E09 – przepływ przez jednostronnie rozszerzony obszar zalewu turtle 106

6.4. Wpływ sposobu reprezentacji obszaru zabudowanego na wyniki obliczeń ... 116
7. NUMERYCZNA SYMULACJA POWODZI NA ZABUDOWANYM TERenie
 ZALEWOWYM OBWAŁOWANEJ RZEKI .. 123
 7.1. Zalew fikcyjnego terenu zabudowanego ... 123
 7.2. Zalew rzeczywistego terenu zabudowanego – Saska Kępa w dolinie Wisły
 w Warszawie ... 129
8. PODSUMOWANIE I WNIOSKI .. 137
Bibliografia .. 140
Streszczenie w jęz. polskim .. 148
Streszczenie w jęz. angielskim .. 149
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Oznaczenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>jakobian wektora F</td>
</tr>
<tr>
<td>Cr</td>
<td>liczba Couranta</td>
</tr>
<tr>
<td>c</td>
<td>prędkość rozprzestrzeniańia się małych zaburzeń</td>
</tr>
<tr>
<td>E, G</td>
<td>wektory strumieni zmiennych zachowawczych w kierunku x i y</td>
</tr>
<tr>
<td>F</td>
<td>wektor strumieni zmiennych zachowawczych</td>
</tr>
<tr>
<td>Fr</td>
<td>liczba Froude’a</td>
</tr>
<tr>
<td>g</td>
<td>przyspieszenie ziemskie</td>
</tr>
<tr>
<td>h</td>
<td>głębokość wody</td>
</tr>
<tr>
<td>I</td>
<td>macierz jednostkowa</td>
</tr>
<tr>
<td>n</td>
<td>współczynnik szorstkości Manninga</td>
</tr>
<tr>
<td>n</td>
<td>wektor jednostkowy, normalny do powierzchni</td>
</tr>
<tr>
<td>n_x, n_y</td>
<td>składowe wektora n</td>
</tr>
<tr>
<td>q_x, q_y</td>
<td>jednostkowe natężeń przepływu odpowiednio w kierunku x i y</td>
</tr>
<tr>
<td>r</td>
<td>prawy wektor własny macierzy A</td>
</tr>
<tr>
<td>R</td>
<td>niezmiennik Riemanna</td>
</tr>
<tr>
<td>S</td>
<td>wektor członów źródlowych</td>
</tr>
<tr>
<td>S_{fx}, S_{fy}</td>
<td>spadek hydrauliczny odpowiednio w kierunku x i y</td>
</tr>
<tr>
<td>S_{dx}, S_{dy}</td>
<td>spadek dna odpowiednio w kierunku x i y</td>
</tr>
<tr>
<td>t</td>
<td>czas</td>
</tr>
<tr>
<td>U</td>
<td>wektor zmiennych zachowawczych</td>
</tr>
<tr>
<td>u</td>
<td>wektor prędkości przepływu</td>
</tr>
<tr>
<td>u_x, v</td>
<td>poziome składowe wektora u</td>
</tr>
<tr>
<td>x, y</td>
<td>poziome współrzędne układu kartezjańskiego</td>
</tr>
<tr>
<td>\lambda</td>
<td>wartość własna macierzy A</td>
</tr>
<tr>
<td>\Theta</td>
<td>współczynnik wagowy</td>
</tr>
</tbody>
</table>
Rozdział 1

WPROWADZENIE

Problem matematycznego modelowania powierzchniowego przepływu wody na terenach o intensywnej zabudowie był jednym z podstawowych elementów wykonanego pod kierownictwem autora w latach 2005–2006 projektu badawczego nr 2 P06S 034 29, finansowanego przez ówczesne Ministerstwo Nauki i Informatyzacji pt. „Fizyczne i matematyczne modelowanie gwałtownych zalewów na obszarach o zróżnicowanym zagospodarowaniu terenu dla potrzeb prognozowania skutków powodzi i wyznaczania lokalnych stref zagrożenia powodziowego”.

Powodzie w obszarach miejskich mają różne przyczyny. Mogą być one bądź następstwem zjawisk naturalnych, takich jak wystąpienia rzek z koryt i ulewne deszcze, bądź też skutkiem uszkodzeń budowli hydrotechnicznych, takich jak zapory zbiornikowe lub wały przeciwpowodziowe. Również sam przebieg powodzi w mieście może być różny: powolny – związany z długotrwałym zapotępieniem terenów zalanych, lub gwałtowny i krótkotrwały – wynikający z nagłego pojawienia się i przejścia fali wezbraniowej. W pracy przedstawiono wyniki badań nad drugim z wymienionych typów powodzi, której skutki zależą głównie od hydrodynamiki przepływu, a nie od czasu zapotępienia zalanych terenów. Skupiono się na analizie wpływu elementów zabudowy miejskiej, takich jak domy i zespoły budynków, na warunki przepływu wody. Szczególną uwagę zwrócono na problem właściwego wyboru i poprawnego rozwiązania matematycznego modelu rozpatrywanego zjawiska fizycznego oraz na ocenę jakości wyników obliczeń.

W hydrologii, najczęściej stosowanym matematycznym modelem przepływu wody w naturalnych ciekach i zbiornikach są jedno- bądź dwuwymiarowe równania de Saint-Venanta. U podstaw wyprowadzenia wspomnianych równań leży założenie o wolnozmienności ruchu wody. W przypadku powodzi na terenach zabudowanych, wywołanych nagłymi przyczynami, takimi jak przerwania wałów powodziowych, można spodziewać się, że przepływ wody będzie miał charakter szybkozmienności. Jednocześnie, w przypadku gdy obszar przepływu jest zabudowany, mogą w nim występować zjawiska lokalne, jak choćby odkoki hydrauliczne, znaczne spiętrzenia i depresje zwierciadła czy strefy cyrkulacji prędkości. Z formalnego punktu widzenia, w takich warunkach ruchu, równania de Saint-Venanta nie są adekwatnym modelem zjawiska przepływu wody ze swobodnym zwierciadem. Prowadząc badania opisane w niniejszej pracy, szukano odpowiedzi na pytanie, czy w praktyce dwuwymiarowe, płaski model fali dynamicznej nadaje się do numerycznych symulacji powodzi na terenie zburzanym, wywołanych awariami wałów przeciwpowodziowych, oraz jakie są ograniczenia jego stosowalności.

W hydrologii, najczystszej stosowana matematyczny model przepływu wody naturalnych ciekach i zbiornikach są jedno- bądź dwuwymiarowe równania de Saint-Venanta. U podstaw wyprowadzenia wspomnianych równań leży założenie o wolnozmienności ruchu wody. W przypadku powodzi na terenach zabudowanych, wywołanych nagłymi przyczynami, takimi jak przerwania wałów powodziowych, można spodziewać się, że przepływ wody będzie miał charakter szybkozmienności. Jednocześnie, w przypadku gdy obszar przepływu jest zabudowany, mogą w nim występować zjawiska lokalne, jak choćby odkoki hydrauliczne, znaczne spiętrzenia i depresje zwierciadła czy strefy cyrkulacji prędkości. Z formalnego punktu widzenia, w takich warunkach ruchu, równania de Saint-Venanta nie są adekwatnym modelem zjawiska przepływu wody ze swobodnym zwierciadem. Prowadząc badania opisane w niniejszej pracy, szukano odpowiedzi na pytanie, czy w praktyce dwuwymiarowe, płaski model fali dynamicznej nadaje się do numerycznych symulacji powodzi na terenie zburzanym, wywołanych awariami wałów przeciwpowodziowych, oraz jakie są ograniczenia jego stosowalności.
Rozdział 2

CEL, ZAKRES I STRUKTURA PRACY

Głównym celem wykonanej pracy było opracowanie i zweryfikowanie metody prognozowania hydrodynamiki fal powodziowych na terenach o zwartej zabudowie miejskiej. Problem ten, związany bezpośrednio z hydrologią zlewni miejskiej, nie został do tej pory szczegółowo rozpoznany; jest wciąż otwarty i interesujący dla władz miast zagrożonych powodzią, inżynierów sanitarnych i wodnych, a także hydrologów. O aktualności podjętego tematu badawczego świadczą liczne publikacje (głównie zagraniczne) ukazujące się regularnie od początku tego wieku, zarówno w czasopismach naukowych, jak i technicznych.

Realizacja wyznaczonego celu wymagała sformułowania matematycznego modelu zjawiska przepływu wody ze swobodną powierzchnią, rozwiązania równań modelu, jego weryfikacji oraz oceny uzyskiwanych wyników. Praktycznym aspektem wykonanych badań jest możliwość zastosowania opracowanego i zweryfikowanego systemu obliczeniowego do numerycznych prognoz zalewów powodziowych na istniejących obszarach zabudowanych, leżących w strefach bezpośredniego zagrożenia zalaniem wskutek uszkodzenia lub zniszczenia zabudowy hydrotechnicznej. Uzyskane wyniki umożliwiają wyznaczanie lokalnych stref zagrożenia powodziowego w miastach.

Badania przeprowadzono w trzech podstawowych etapach, wykorzystując w nich równolegle dwie metody analizy rozpatrywanego zjawiska – laboratoryjną i obliczeniową. Badania laboratoryjne służyły ogólnemu rozpoznaniu charakterystycznych cech fali powodziowej na obszarze zabudowanym oraz zjawisk hydraulicznych towarzyszących szybkozmiennemu przepływowi wody, podlegającemu wpływowi zabudowy miejskiej. Analizowano hydrauliczne warunki przepływu pojedynczego budynku i przepływu między budynkami. Do tego celu wykorzystano dostępne obserwacje i wyniki pomiarów z zagrożonego obszaru oraz wyniki własnych doświadczeń prowadzonych w laboratorium hydraulicznym. Zebrane w ten sposób informacje stworzyły unikatową bazę danych o hydrodynamice przepływu wody, która później została wykorzystana do weryfikacji obliczeń numerycznych.

Równolegle z realizacją badań laboratoryjnych prowadzono prace nad sformułowaniem, rozwiązywaniem i weryfikacją matematycznego modelu przepływu wody przez zabu-

Struktura przedstawionej rozprawy jest następująca. W rozdziałach pierwszymi i drugim opisano podjęty temat badawczy, cele i zakres podjętej pracy oraz krótko przedstawiono zastosowane metody i zakres przeprowadzonych badań.

W rozdziale trzecim scharakteryzowano zjawisko powodzi, przedstawiono historyczne uwarunkowania powiązania miast z wodą, zaprezentowano przyczyny pojawiania się wody w mieście, a także drogi przepływu wody przez obszary zurbanizowane. W tej części pracy opisano także zagrożenia, jakie niosą ze sobą powodzie miejskie oraz metody ich ograniczania ze szczególnym uwzględnieniem konieczności wyznaczania stref zalewów powodziowych i wykonywania map zagrożenia powodziowego.

Czwarty rozdział pracy zawiera opis stanu wiedzy na temat matematycznego modelowania propagacji fal powodziowych w naturalnych ciekach i zbiornikach oraz na terenach zabudowanych. W rozdziale tym opisano zarówno różne modele matematyczne przepływu wody ze swobodnym zwierciadłem, jak i metody ich rozwiązywania w odniesieniu do możliwości modelowania szybkozmiennego przepływu powierzchniowego na terenach zurbanizowanych, a także w kanalizacji deszczowej.

W rozdziale piątym szczegółowo przedstawiono dwuwymiarowy model przepływu wody płytkiej, wykorzystany do opisu zjawiska powierzchniowego przepływu wody przez obszar zabudowany. Zaprezentowano postać równań modelu, dokonano klasyfikacji równań różniczkowych cząstkowych tworzących model oraz sformułowano niezbędne do ich rozwiązania warunki graniczne. W drugiej części tego rozdziału opisano numeryczne rozwiązywanie modelu matematycznego, przedstawiając opracowane i zastosowane metody całkowania równań w przestrzeni i czasie.

W szóstym, najobszerniejszym rozdziale pracy, przedstawiono wyniki laboratoryjnych i numerycznych badań przepływu powierzchniowego na terenie zabudowanym. Analiza
wyników pomiarów i obliczeń posłużyła do weryfikacji modelu i oceny przydatności równań przepływu wody płynkiej do opisu ruchu wody na obszarze zurbanizowanym. W rozdziale tym szczegółowo opisano także stanowisko badawcze, metodykę pomiarów oraz przebieg badań laboratoryjnych.

W przedostatnim, siódmym rozdziale przedstawiono zastosowanie własnego programu komputerowego do symulacji powodzi na obwałowanym, zabudowanym terenie zalewowym rzeki. Przedstawiono wyniki obliczeń dwóch przykładów przepływu powodziowego wywołanego przerwaniem obwałowania przeciwpowodziowego.

Ósmy, ostatni rozdział pracy zawiera podsumowanie i wnioski końcowe.
Rozdział 3

CHARAKTERYSTYKA POWODZI MIEJSKICH

Pojęcie powodzi ma różne definicje. Zgodnie z polskim Prawem wodnym z lipca 2001 r. (Dz. U. Nr 115, poz. 1229) przez powódź rozumie się takie wezbranie wody w ciekach, naturalnych zbiornikach wodnych, kanałach lub morzu, podczas którego woda po przekroczeniu stanu brzegowego zalewa doliny rzeczne, albo tereny depresyjne i powo-}

duje zagrożenia dla ludności lub mienia.

Powódź jest często mylona z pojęciem wezbrania (Radczuk i in., 2001). Poprawnie wezbraniem nazywamy wzrost stanów wody w cieku, kanale, zbiorniku lub morzu, natomiast powodząt jest takie wezbranie, które powoduje zagrożenie życia ludzkiego i szkody społeczne, ekonomiczne oraz środowiskowe, takie jak zniszczenia domów, dróg, infrastruktury technicznej, upraw rolniczych, zabytków kultury, ale także dezorganizację życia społecznego, skażenie terenu i wód substancjami szkodliwymi itp. Oczywiście przyczyną powodzi są wezbrania, ale nie każde wezbranie jest powodzią. Co więcej, to samo wezbranie, powodujące zalanie terenu, może stać się powodzią lub nie – w zależności od sposobu użytkowania przez człowieka zalanego obszaru.

Jak już wspominano, wezbrania wywołują powódź tylko wówczas, gdy podczas wezbrania zalane zostaną tereny użytkowane przez człowieka, co spowoduje straty. Można więc powiedzieć, że ryzyko powodzi jest kosztem zabudowy i niewłaściwego użytkowania terenów zagrożonych. Niestety, ciągle wzrastająca zainteresowania inwestowaniem na takich obszarach zwiększa straty powodziowe. Wynika stąd, że jedyną właściwą metodą ochrony przed powodzią jest praktyczne zaniechanie użytkowania przez człowieka terenów zale-}

wowych w sposób podatny na szkody wywoływane zalaniem.
Na przestrzeni ostatnich lat obserwujemy wzrost częstotliwości występowania powodzi (Savenije, 1995). Przez wiele lat sądzono, że ochrona przeciwpowodziowa może sprostać się wyłącznie do stosowania środków technicznych, takich jak zbiorniki retencyjne, polderzy czy obwodnica rzek. Niestety, praktyka pokazała, że nie ma urządzeń niezawodnych, a ich atrakcyjne, wobec intensywnego zagospodarowania terenów chronionych, mogą prowadzić do ogromnych szkód. Stąd w ostatnich latach odchodzi się od ochrony przeciwpowodziowej określonej według zasady „odsunąć wodę od człowieka” na rzecz szeroko rozumianego zarządzania powodzą (ang. flood management), rozwoju zrównoważonego (ang. sustainable development) oraz wciela się w życie nowe podejścia definiowane jako „odsunąć człowieka od wody” (Kundzewicz, 2002). Niestety tę ostatnią, prostą wydawały sięizzieasadę, niełatwo jest stosować w praktyce. Wszędzie na świecie cywilizacje i miasta rozwijały się nad rzekami, często na terenach zalewowych, a wiele z nich ciągle tam się znajduje. Nieraz jest oczywiste przenoszenie całych miast na teren niezagrożony zalaniem. Natomiast możliwe i konieczne jest ograniczanie zabudowy i właściwe zagospodarowanie terenów zalewowych w planowanej przyszłości.

3.1. Miasta a woda

Na świecie, miasta powstawały zwykle w miejscach o walorach obojętnych, zapewniających dostęp do wyżywienia i wody oraz do szlaków handlowych. Wszystkie te warunki spełniał lokalizacja osad w sąsiedztwie rzek. Pierwsze stałe osady ludzkie powstały w okre- sie neolitu (Kaplan i in., 2004). Początek tego okresu datuje się na około 7000 lat p.n.e., a trwał do około 2 tys. lat p.n.e. W tym właśnie okresie ludzie zaczęli hodować zwierzęta i uprawiać rośliny. W konsekwencji zmiany sposobu życia zaczęły powstawać osady, w sie, a wkrótce i miasta. Na najstarsze stałe osady archeolodzy uznali osiedla w Północnej Palestynie (Palestyna), usytuowane niedaleko rzeki Jordan. Z tego samego okresu pochodzą kolejne osady, z których wiele przenoszenie całych miast na terenu zagrożonych ranach. Podobnie jest z obecnych osad, wsie, w których charakterystyka powodzi miejskich

Dalszy rozwój techniki zapotrzebowania w wodę, melioracji i kanalizacji nastąpił w starożytnjej Cywilizacje starożytnych kultur, takie jak El–Kown (Syria) odnaleziono najstarsze ślady kanalizacji domowej, datowane na około 6500 rok p.n.e. (Delleur, 2003). Później kolejne osady i miasta powstawały intensywnie w czwartym tysiącleciu p.n.e. w deltagrno Eufratu i Nilu, tworząc wielkie cywilizacje Mezo- potamii i Egiptu, a w trzecim tysiącleciu p.n.e. na Bliskim Wschodzie i w Indiach. Rozwo- jowi miast stale towarzyszyło ulepszanie infrastruktury przeciwpowodziowej i kanalizacyjnej. Przykładowo, miasto w dolinie Indusu były budowane na wzniesieniach powyżej poziomu wysokich wód. Wzniesienia te były chronione przed erozją murowanymi umocnieniami. Miasto Mohenjo-Daro (Pakista), leżące na prawym brzegu rzeki Indus, zostało natomiast odsunięte od rzeki sztucznymi barierami. W miejscowości tej, na terenie dolnego miasta, odsunięto też ślady domostw mających małe taniki z systemami doprowa- dzania wody i odprowadzania ścieków (Delleur, 2003). Kanalizacja składała się z glini- nych tur, krytych rynsztoków i kolektorów prowadzonych pod ulicami.

Kolejne społeczności i miasta rozwijały się w basenie Morza Śródziemnego. Cywili- zacje minojska, rozwijająca się od trzeciego tysiąclecia p.n.e. w basenie Morza Egejskiego, zasłynęła nie tylko wysokim poziomem rozwój architektury i rzemiosła artystycznego, ale wniosła też swój wkład do historii inżynierii sanitarnej. W tych czasach rozwinięły się i rozpoznały pełne systemy wodociągowe i kanalizacyjne, budowane z gliniianych, stożkowo wykonanych tur, umożliwiających wzajemne łączenie i budowę rurowych. Dalszy rozwój techniki zapotrzebowania w wodę, melioracji i kanalizacji nastąpił w starożytnjej cywilizacji starożytnej.

3. Charakterystyka powodzi miejskich

Po upadku Imperium Rzymskiego w Europie Zachodniej nastąpił upadek zaawansowanej techniki sanitarnej. Z miast zniknęły publiczne latrine wraz z systemami zaopatrzenia w wodę i odprowadzania ścieków. Zainteresowanie ludzi wodą przesunęło się z problemów natury sanitarnej na rzecz wykorzystania energii wodnej, co zaowocowało pojawieniem się nad rzekami młynów i tartaków wodnych. W Średnioroecku i latach wcześniejszych w miastach takich jak Paryż, woda pitna była pobierana bezpośrednio z rzek, a ścieki spływały powierzchniowo, rynsztokami i kanałami otwartymi ponownie do tych samych cie ków. Taki sposób gospodarki wodno-ściekowej doprowadził do bardzo złej sytuacji sanitarnej w miastach Europy i zaowocował wielkimi epidemiami. Ponowny i już nieustanny rozwój techniki sanitarnej w miastach rozpoczął się w IX wieku, kiedy to w głównych miastach Europy (Paryż, Londyn) wybudowano wielkie systemy wodociągowe i kanalizacyjne.

Jak wspomniano wcześniej, rozwój techniki sanitarnej w miastach towarzyszył przez wszystkie lata działania związane z melioracjami (nawodnieniami, odwodnieniami), ochroną przeciwpowodziową i regulacją cie ków wodnych. W początkowych etapach historii ludzkości nie próbowały jednak ujarzmiać rzek, a cywilizacje osiadłe w dolinach dobrze radziły sobie z wodami. Przykładowo, dla starożytnej Egipcjan wylewający Nil był dobrodziejstwem, a nie zagrożeniem. Zarówno w czasach starożytnych, jak i nowożytnych na lokalizacje miast wybierały zwykle miejsca bezpieczne, o czym świadczą stare centra oddalone zazwyczaj od brzegów rzek. Widać to także w polskich miastach. Na przykład warszawskie Stare Miasto jest położone na wysokiej skarpie, a Krakowski Wawel stoi na wzórzu. Proste zasady wynoszenia zabudowy miejskiej ponad poziom zalewów zapewniły ludziom przez długie lata ochronę przed powodziami. Z czasem jednak miasta rozrastały się i wkraczały na tereny zalewowe. Od tego momentu rozpoczęło się stosowanie technicznych środków ochrony miast przed powodziami, a do najpowszechniejszych można zaliczyć różnego typu obwałowania. Wkraczenie miast i człowieka na tereny zalewowe oraz silna wiara w niezawodność zabudowy hydrotechnicznej spowodowała jednak wzrost zagrożenia powodziowego. Wynika to z faktu, że tak naprawdę nie ma niezawodnych zabie pień przeciwpowodziowych, a negatywne skutki potencjalnych powodzi na terenach silnie zagospodarowanych i użytkowanych przez człowieka intensyfikują się. Potwierdzenie tych spostrzeżeń są obserwowane w ostatnich latach na świecie liczne powodzie miejskie, których materialne i niematerialne skutki osiągają znaczne rozmiary. Zalania miast występowały także ostatnio w Polsce, czego przykładem są powodzie we Wrocławiu w 1997 roku (Dubicki i in., 1999), czy w Gdańsku w 2001 roku (Cyberski, 2003; Majewski, 2005).
3.2. Przepływ wód opadowych w mieście

Z wcześniejszych uwag wynika, że urbanizację powoduje tak silne zmiany w przebiegu procesów hydrologicznych, że prowadzą one w konsekwencji do wzrostu zagrożenia powodziom o charakterze lokalnym. W przypadku intensywnych (nawalnych) opadów, występujących nawet na niewielkim obszarze miasta, często okazuje się, że urządzenia retencyjne i przechwytyujące wodę opadową są zbyt mało sprawne (Edel i Suligowski, 2004). Woda płynie wtedy po powierzchni siecią ulic i napotykając liczne przeszkody zalewa domy i okoliczną infrastrukturę. Istniejąca sieć kanalizacji deszczowej (projektowana zwykle dla przepływów o prawdopodobieństwie przekroczenia p = 10%, w przypadku zbyt małej przepustowości, może również stać się przyczyną powtórnej wystąpienia wody na powierzchni terenu. Tego typu zalania mogą wystąpić w zupełnie innych częściach miasta niż sam opad.

Ostatecznie można powiedzieć, że powodzie miejskie są skutkiem działalności człowieka i następnie zmian, jakie człowiek wprowadził w swoje naturalne otoczenie. Jest to efekt przeniesienia aktywności inwestycyjnej na tereny zalewowe cieków i zbiorników wodnych, nad którymi lokalizowano miasta, i modyfikacja przebiegu procesów hydrologicznych przebiegających w zlewniach miejskich.

3.3. Skutki powodzi

Powodzie miejskie, choć mają charakter lokalny, to ich skutki są bardzo groźne. Wynika to z faktu, że powodzie typu lokalnego są zwykle nagle i nieprzewidywalne, co powo-
duje, że czas reakcji na zagrożenie jest bardzo krótki – w praktyce niewystarczający na podjęcie jakichkolwiek działań zaradczych.

Skutki powodzi można podzielić między innymi na następujące grupy (Mark i in., 2004):
— bezpośrednie – zagrożenie zdrowia i życia ludzkiego oraz straty materialne powodowane przez wodę,
— pośrednie – zerwania linii komunikacyjnych, koszty prawne i administracyjne, straty w produkcji przemysłowej, rozprzestrzenianie się chorób itp.
— społeczne – długookresowe efekty spowodowane spadkiem poziomu życia i wartości terenów na obszarach dotkniętych powodzią, a także zwolnieniem rozwoju ekonomicznego.

Należy zaznaczyć, że w przypadku powodzi miejskich największe straty powodują nie skutki bezpośrednie, ale przerwania ciągłości procesów ekonomicznych, społecznych i gospodarczych (Douben i Verhagen, 2005). Nie wolno również zapominać o oddziaływaniu powodzi na środowisko naturalne (także w zlewni miejskiej).

Niezmiernie trudna jest również wycena strat spowodowanych powodzią. Można jednak zauważyć, że zarówno zagrożenie zdrowia i życia ludzkiego (Jonkman i in., 2002), jak i koszty materialne (Douben i Verhagen, 2005; Mark i in., 2004; Reiter, 2000; Twaróg, 1998; Maciejewski, 2000; Scawthorn i in., 2006) zależą przede wszystkim od hydrodynamicznej fal powodziowej (czas zalewu, głębokość, prędkość wody) oraz parametrów charakteryzujących załadunie i zagospodarowanie terenu. Informacje o lokalnych wartościach głębokości i prędkości przepływu w obszarze zabudowanym można też wykorzystać do szacowania oddziaływania powodzi na poszczególne budynki, przez określenie wartości sił parcia hydrostatycznego i hydrodynamicznego, sił wyporu, a także intensywności erozji powodowanej przepływem wody i rumowiska (Kelman i Spence, 2004).

W kontekście zapobiegania powodzi metodą ograniczania zagospodarowywania terenów zalewowych, a także oceny skutków wystąpienia ewentualnego zagrożenia powodziowego, widać wyraźnie, jak ważne jest przestrzenne określenie zasięgu i innych parametrów potencjalnych zalewów terenu. W tym celu, na zlecenie planistów i instytucji ubezpieczeniowych wykonuje się prognozy charakterystyk potencjalnej powodzi, w tym tzw. mapy zalewów powodziowych. Madej (2000) definiuje mapę zalewów powodziowych jako „opracowanie, w którym – na podstawie analiz hydrologicznych oraz znajomości ukształtowania koryta rzeki i terenów przyległych, wykonano obliczenia hydrauliczne i ich efekt przedstawiono na mapie w postaci granic obszarów zalewowych z ewentualnym poziomem wody” oraz parametrów charakterystycznych dla obszarów zalewowych. W procesie Erica mapy są jawnie zaznaczane oraz wykorzystuje się nowoczesne metody modelowania wodne z cyfrowym modeliem rzeczywistego terenu zalewowych. Obliczenia hydrologiczne polegają na statystycznej analizie danych historycznych o przepływach i ustaleniu odpowiadających im poziomów wody. Niezbędne do
wykonania obliczeń są wyniki pomiarów geodezyjnych, tj. przekroje poprzeczne rzeki i terenów przyległych oraz geometria obiektów hydrotechnicznych zlokalizowanych w korycie, uzupełnione informacją o pokryciu terenu. Narzędziem obliczeniowym są najczęściej hydrauliczne modele ruchu ustalonego. Z kolei powszechnym już narzędziem wykorzystywanym do wyznaczania granic obszarów zalewowych stały się systemy informacji geograficznej (GIS), wypierając tradycyjną metodę wykreślania na mapie topograficznej zalewu na podstawie informacji dotyczących poziomów wody w zadanych przekrojach poprzecznych oraz analizy przebiegu warstwie (Madej, 2000; Grelle i in., 2003; Magnuszewski i in., 2005).

Z przedstawionych informacji wynika, że zarówno działania na rzecz zmniejszenia ryzyka wystąpienia powodzi na obszarach miejskich, jak i ocena skutków potencjalnej powodzi, a także tworzenie systemów wspomagania decyzji (Todini, 1999) wymagają znajomości hydrodynamicznych parametrów fali wezbraniowej. W praktyce, określenie charakterystyk tych fal dostarczyć mogą wyłącznie wielowariantowe symulacje komputerowe, w których podstawowym elementem jest matematyczne modelowanie nieustalonego przepływu wody ze swobodną powierzchnią na obszarze zabudowanym. To zagadnienie analizowano w dalszej części pracy.
STAN WIEDZY O MATEMATYCZNYM MODELOWANIU PRZĘPŁYWÓW POWODZIOWYCH

Analizując przepływ wody przez teren zurbanizowany, należy rozpatrzyć drogi tranzytowe wody, która może pojawić się w mieście wskutek dowolnych przyczyn. Dwie podstawowe drogi przepływu wody to, jak wspomniano już wcześniej, szeroko rozumiana infrastruktura podziemna oraz powierzchnia terenu. Miasta są zwykle wyposażone w systemy odprowadzania wód opadowych i roztropowych, składające się głównie z kanalizacji deszczowej, choć elementami systemu bywają także naturalne cieki, kanały otwarte i zbiorniki retencyjne. Kanalizacja deszczowa jest projektowana dla natężenia przepływu o założonym prawdopodobieństwie przekroczenia – zwykle jest to $p = 10\%$. To, czy system kanalizacyjny zdoła przejąć całą wodę, czy też nie, zależy od intensywności zjawiska, które spowodowało pojawienie się wody na powierzchni terenu. Sama kanalizacja bywa również przyczyną lokalnych załączeń terenów miejskich, gdy przechwyciwszy wodę z jednego obszaru, wskutek miejscowego zmniejszenia przepustowości, powoduje jej wypływ przez wpusty uliczne i studzienki w innym regionie.

O tym, która droga transportu wody przez miasto dominuje, lub czy są one równorzędne, decyduje relacja między objętością i natężeniem spływu powierzchniowego oraz przepływu w sieci kanalizacyjnej. W niniejszej pracy przyjęto, że powierzchniowy przepływ wody na obszarze zabudowanym wielokrotnie przekracza możliwości tranzytowe i retencyjne kanalizacji deszczowej (jak i innej infrastruktury podziemnej). Upoważnia to do zaniedbania tego elementu systemu przepływu wody. Jednak w celu pełniejszego zobrazowania stanu wiedzy, w rozdziale tym przedstawiono przegląd technik obliczeniowych dotyczących różnych elementów przepływu wody przez obszar zabudowany.

4.1. Modelowanie propagacji fali wezbraniowej w ciekach i naturalnych dolinach rzek

Przedstawiony w niniejszym rozdziale stan wiedzy w dziedzinie modelowania propagacji fali wezbraniowej opracowano na podstawie danych zebranych z literatury fachowej: książek, publikacji w czasopismach, referatów konferencyjnych, a także na podstawie raportów z prowadzonych prac badawczych.

Biorąc pod uwagę bardzo dużą liczbę opublikowanych w ubiegłych latach prac z zakresu rozważanej tematyki oraz nieustanny wzrost szybkości ukazywania się nowych pozy-
czyniono przegląd obrazuje jedynie główne nuty obecne w literaturze podjętego
w pracy tematu.

4.1.1. Modele matematyczne

Matematyczne modelowanie propagacji fali wezbraniowej – podobnie jak innych pro-
cesów fizycznych – realizowane jest w kilku etapach. Są to w kolejności: rozpoznanie zja-
wiska fizycznego, przyjęcie odpowiednich równań matematycznych opisujących propaga-
cję fali (czyli wybór lub wyprowadzenie równań fizyki matematycznej), rozwiązanie
równań oraz weryfikacja otrzymanego rozwiązania. Można stwierdzić, że przepływ wody
w trakcie propagacji fali jest zjawiskiem dość dobrze rozpoznanym, pod warunkiem, że
rozpatruje się wyłącznie jego charakterystykę hydrodynamiczną, pomijając jednocześnie
wszelkie aspekty związane z transportem rumowiska (Morris, 2000). Omawiane zjawisko
możemy zakwalifikować w mechanice płynów jako problem nieustalonego przepływu
nieściśle cieczy ze swobodną powierzchnią. Dokładnym modelem matematycznym
takiego przepływu w trzech wymiarach przestrzennych są znane równania ciągłości, wy-
wodzące się z prawa zachowania masy oraz równanie Naviera-Stokesa, reprezentujące
prawo zachowania pędu (Puzyrewski i Sawicki, 1987). Niestety, ze względu na zjawisko
turbulencji występujące w przepływie wody ze swobodną powierzchnią, nie istnieje bezpo-
średnie rozwiązanie takiego modelu. Aby pokonać trudności wynikające z opisu turbulen-
cji, podstawowe równania zachowania można uśrednić w czasie, otrzymując tzw. równanie
Reynoldsa. Występujący w nim człon związany z lepkością turbulentną wymaga zdefinio-
wania modelu turbulencji. Model Reynoldsa stosowany jest głównie w przemysłowych
aplikacjach mechaniki płynów, takich jak hydroenergetyka czy aerodynamika. W mode-
lowaniu hydrodynamiki przepływów powodziowych aspekt ten nie jest szczególnie ważny,
ze względu na głównie adwekcyjny charakter przenoszenia pędu w tego rodzaju przepły-
wach. Kolejnym problemem związany z zastosowaniem modelu Reynoldsa do opisu
propagacji fali wezbraniowej jest kwestia występowania swobodnej powierzchni wody,
która wymaga rozwiązania problemu ruchomego brzegu obszaru przepływu. Zgodnie z
warunkiem kinematycznym, swobodna powierzchnia przemieszcza się z prędkością równą
prędkości cząstek wody tworzących brzeg obszaru. Problem rozwiązania polega na tym, że
równania przepływu (Reynoldsa) opisują ruch wody w obszarze wypełnionym wodą, który
w przypadku zmiany położenia powierzchni wody nie jest znany. W literaturze można
znaleźć numeryczne metody rozwiązania tego problemu, które polegają zwykle na iteracyj-
nym wyznaczaniu jej położenia. Dwie najbardziej znane, to metoda VOF (ang. Volume of
rzystanie tych metod do modelowania powierzchniowego przepływu wody w skali geo-
ograficznej jest możliwe, lecz ze względu na duże zapotrzebowanie na moc obliczeniową nie są
one stosowane do rozwiązania praktycznych problemów inżynierii wodnej. W literatu-
rze można znaleźć opis wykorzystania równań Reynoldsa dla przypadku przepływu piono-
wego płaskiego, ale dotyczą one wyłącznie symulacji uproszczonych scenariuszy przepły-
wu szybkozmiennego w kanałach otwartych (np. Maronnier i in., 1999; Mohapatra i in.,
1999; Szydłowski i Zima, 2006; Zwart i in., 1999). Dodatkowo w wymienionych pracach
pominięto problem turbulencji, co w praktyce oznacza, że rozważano nie równania
Reynoldsa, lecz Eulera. Jak dotychczas, rozwiązania równań ruchu w trzech wymiarach
przestrzennych ograniczają się do przypadku przepływów ustalonych i wolnozmiennych
(np. Casulli i Stelling, 1998; Ye i McCorquodale, 1998), bądź symulacji lokalnych zjawisk
hydralicznych (Stelling i Busnelli, 2001), co nie ma zastosowania w rozwiązywaniu prak-
tycznych problemów związanych z propagacją fali wezbraniowej.

Często stosowanym modelem przepływu wody ze swobodną powierzchnią są równa-
nia przepływu wody płytkiej (ang. Shallow Water Equations), nazywane też modelem de
Saint-Venanta lub modelem fali dynamicznej (Tan, 1992). Model ten wyprowadza się
z równa Naviera-Stokesa, stosując procedurę uśrednienia wzdłuż głębokości (Sawicki,
1998). Zabieg ten eliminuje z rozwiązania problem ruchomego brzegu obszaru rozwiąza-
nia, zastępując go wyprowadzeniem do modelu zmiennej w obszarze przepływu głębokości
wody. Równania fali dynamicznej nie są już jednak pełnym modelem przepływu ze swo-
bowodnym zwierciadłem. Podstawowym założeniem w trakcie ich wyprowadzania jest wol-
nozmienność ruchu wody. Zakłada się również, że pionowa składowa prędkości jest pomi-
jalnie mała, co skutkuje brakiem pionowych przyspieszeń, rozkład ciśnienia jest
hydrostatyczny, a spadki dna są małe (Chow, 1959). Ponadto w trakcie formułowania mo-
delu de Saint-Venanta przyjmuje się, że opory w ruchu nieustalonym można szacować
identycznie jak w ustalonym, używając w tym celu np. formuły Manninga. Niekiedy orygii-
nalny model de Saint-Venanta uzupełnia się dodatkowymi czlonami reprezentującymi siłę
Coriolisa, naprężenia wiatrowe (Szymkiewicz, 1992) oraz procesy o charakterze źródló-
wy, jak opady czy infiltracja (Fiedler i Ramirez, 2000). W przypadku propagacji fali
wezbraniowej wymienione zjawiska zwykle pomija się, chociaż czasem mogą być one
istotne w modelowaniu przepływu przez obszar zbudowany, gdzie część wody powierzch-
niowej może być odbierana przez kanalizację deszczową, co można uwzględnić w modelu
odpowiednim czlonem źródłowym (Ettrich i in., 2004).

Przepływ wody wywołany nagłym zniszczeniem budowli piętrzącej, czy obwałowania
wezbranej rzeki ma charakter szybkozmienienny. Dominują w nim zjawiska lokalne, takie jak:
odskoki hydrauliczne, odbicia fali, nagle spiętrzenia i depresje zwierciadła, cyrkulacje
i strepy martwe. Wobec poczynionych w trakcie wyprowadzania założeń oczywiste jest, że
równania de Saint-Venanta nie są odpowiednim modelem takiego zjawiska przepływu. Jed-
nak większość praktycznych aplikacji związanych z propagacją fal wezbraniowych w natu-
ralnych dolinach rzek wykorzystuje właśnie ten model do opisu przepływu – zwykle z do-
brym efektem (Morris, 2000; Szydlowski, 2003). Okazuje się bowiem, że mimo
niespełnienia założeń wolnozmienności przepływu, może być on jednak opisany tymi sa-
nymi równaniami. Możliwe jest to tylko wtedy, gdy pominię się wewnętrzną strukturę
odskoków hydraulicznych, zastępując je nieciągłościami funkcji reprezentujących parame-
try przepływu (głębokość i prędkość wody) (Cunge i in., 1980). Konieczne jest również
zastosowanie do modelowania ruchu wody właściwej postaci równań. Muszą być one zapi-
sane w formie zachowawczej (Abbott, 1979). W literaturze można znaleźć próby ulepszże-
nia modelu przepływu wody płytkiej, które eliminowałyby ułomności opisu przepływu
wody charakterystyczne dla tego modelu. Szczególnie interesujące – w kontekście model-
owania przepływu szybkozmiennego – wydaje się poszukiwanie możliwości uwzględnia-
nia w równanach nieliniowego rozkładu ciśnienia wzdłuż głębokości (Rao, 2002). Należy
też podkreślić, że w modelowaniu hydrodynamiki równaniami de Saint-Venanta niezmiernie
rzeźko spotyka się zastosowanie, w których uwzględnia się turbulencję przepływu (Na-
daoka i Yagi, 1998; Zhou i Stansby, 1999), co jest z kolei naturalne w modelowaniu przep-
ływu w płaszczyźnie pionowej (Stansby i Zhou, 1998). Wynika to z założenia, że w
przepływach w kanałach i zbiornikach otwartych procesy przenoszenia pędu wskutek
turbulencji i uśrednienia profilu prędkości są mało istotne. Dykusyjna jest również kwestia
uwzględnienia w modelu de Saint-Venanta oporów ruchu wynikających z szorstkości dna.
Tradycyjnie stosuje się w tym celu formuły empiryczne – na przykład według Manninga.
Formuła ta była opracowana dla ruchu ustalonego, jednostajnego, i nie ma praktycznie przesłanek do stosowania jej w symulacji przepływów nieustalonych, szczególnie w warunkach ruchu szybkodziennego. Wątpliwości te potwierdzają wyniki badań nieustalonych przepływów w rurociągach (Axworthy i in., 2000; Brunone i in., 1995; Wichowski, 2002). Z badań tych wynika, że prawa opisujące straty energii mechanicznej w przepływach nieustalonych są inne niż w ruchu ustalonym, z czego można wnioskować, że podobnie jest w przypadku przepływów ze swobodą powierzchnią. W literaturze można odnaleźć próby badania zmienności współczynnika szorstkości w różnych warunkach ruchu (Rao, 2002; Yen, 2002), jednak podejście te nie zmieniają generalnie postaci równań modelu. Alternatywą wydaje się metoda podwójnego uśredniania równań przepływu (Nikora i in., 2001). W wyniku uśredniania przestrzennego (wykonanego analogicznie do uśrednienia w czasie, prowadzącego do równań Reynoldsa) można otrzymać zmodyfikowane równania przepływu wody płynkiej, zawierające dodatkowe czynniki, reprezentujące między innymi naprężeń stycznych przy dnie. Badania nad fizyczną interpretacją dodatkowych czynników trwają i wydają się obiecujące (Nikora i in., 2004).

Kolejnym uproszczeniem opisu propagacji fal wezbraniowe jest przyjęcie założenia o zredukowaniu obszaru przepływu do jednego wymiaru przestrzennego. Takie podejście do transformatacji fal wezbraniowej jest możliwe, gdy propagacja odbywa się wyłącznie w korycie rzeki lub gdy zalewana dolina cieku ma zwarty charakter (Szymkiewicz, 2000), czyli w sytuacji, w których dominuje jeden kierunek przepływu w korycie rzeki lub gdy zalewana dolina cieku ma zwarty charakter (Szymkiewicz, 2000). Jej otrzymanie możliwe jest na podstawie równań przestrzennych (wykonanych analogicznie do uśredniania przestrzennego), jednak otrzymane równania są wielowymiarowe (Axworthy i in., 2000; Brunone i in., 1995; Wichowski, 2002).

Analizując opublikowane prace z zakresu modelowania fal powodziowych, można stwierdzić, że obecnie najpowszechniej stosowanym modeliem propagacji fal wezbraniowej, szczególnie w przypadku symulacji przepływów na rozległych obszarach zalewowych, są równania przepływu wody płynkiej, czyli dwuwymiarowy model de Saint-Venanta.
4.1.2. Metody rozwijywania równań przepływu wody płytkiej

W ostatnich latach najbardziej rozpowszechnioną techniką przestrzennej aproksymacji równań przepływu powierzchniowego w przestrzeni jest metoda objętości skończonych (LeVeque, 2002). W porównaniu z MRS i MES, MOS jest bardziej elastyczną w odwzorowaniu kształtu obszaru obliczeniowego – umożliwia aproksymację przestrzeni elementami (objętościami skończonymi) o różnych kształtach w ramach jednego zadania, a dodatkowo zapewnia – z założenia – zachowanie masy i ilości ruchu w procesie obliczeniowym. Wybór tego, że jest ona oparta na całkowitej postaci równań zachowania. MOS jest pewnym sposobem zapisania MRS dla równań zachowania w formie zachowawczej, a w przypadku jednowymiarowym te dwie metody są sobie równoważne. W literaturze można odnaleźć różne zastosowania tej metody do symulacji propagacji fal wezbraniowych,

Dyskretyzacja przestrzenna obszaru przepływu powoduje zastąpienie ciągłego obszaru obliczeń siatka numeryczną. Sposób dyskretyzacji obszarów obliczeniowych nierozecznie związany jest z przyjętą metodą aproksymacji równa różniczkowych. W praktyce obliczeniowej wykorzystywane są dyskretyzacje na dwóch rodzajach siatek: strukturalnych oraz niestrukturalnych. Pierwsze budowane są najczęściej na bazie figur regularnych, często symetrycznych. W obszarach dwuwymiarowych są to przeważnie kwadraty, prostokąty, sześciokąty itp. Ten typ siatki stosowany jest powszechnie w MRS oraz MOS. Jego zaletą jest łatwość generowania samej siatki, a ze względu na regularność, możliwe jest wykorzystywanie efektywnych metod rozwiązywania układów równań. Wadą siatki strukturalnej jest trudność przybliżania skomplikowanych geometrycznie obszarów, w szczególności wtedy, gdy są one niespójne. Siatki niestrukturalne są budowane na bazie figur nieregularnych (w obszarach dwuwymiarowych są to najczęściej trójkąty oraz czworokąty) i wykorzystywane powszechnie w MES i MOS. Ich niewątpliwą zaletą jest łatwość aproksymacji, nawet bardzo skomplikowanych obszarów obliczeniowych prostymi figurami, takimi jak np. trójkąty, a podstawową wadą stosunkowo duża liczba wejściowych informacji niezbędnych do uruchomienia procesu generacji siatki. Ze względu na swoją niestrukturalność, siatki tego typu mogą być lokalnie zagęszczane lub też rozgęszczane. Proces ten można wykonywać w założonym obszarze przed rozpoczęciem obliczeń (Horritt, 2000), albo w trakcie ich prowadzenia (Ivanenko i Muratova, 2000). Nowym podejściem do problemu siatek numerycznych w modelowaniu hydrodynamicznych przepływów powierzchniowych są metody typu Q-tree (Rogers i in., 2001; Liang i in., 2004), zapewniające dynamiczne zagęszczanie siatek strukturalnych. To podejście można łączyć ze specjalnymi technikami uwzględniania skomplikowanych geometrycznie i ruchomych granic obszarów obliczeniowych (Causon i in., 2000, 2001).

Jak wiadomo, rozwiązania ewolucji zjawisk fizycznych uzyskane na drodze modelowania matematycznego wymagają weryfikacji. Porównanie wyników z rozwiązaniami dokładnymi w przypadku modelowania propagacji fali wezbraniowej w warunkach ruchu szybkozmiennego jest możliwe wyłącznie dla ruchu jednowymiarowego i to tylko w zakre-
4.2. Modelowanie przepływu wód przez obszary zabudowane

Podejście do problemu modelowania przepływu w mieście, w tym do zagrożenia powodziowego, zależy od przyczyn pojawienia się wody w zlewni zburzanej oraz od wyboru i przyjęcia dominujących dróg trzynu wody przez miasto. Do odwzorowania przepływu wód opadowych, pojawiających się w mieście wskutek deszczu o małej bądź średniej wysokości, zwykle wykorzystuje się modele hydrologiczne transformacji opadu w odpływ (Eagleson, 1978; Ozga-Zielińska i Brzeziński, 1994; Illgen i Schmitt, 2004; Rodriguez i in., 2005), które dostarczają informacji o hydrogramie odpływu ze zlewni. Należy w tym miejscu zauważyć, że coraz większą rolę w modelowaniu procesów hydrologicznych w zlewni pełnią systemy GIS, dostarczając danych o cechach geomorfologicznych analizowanej zlewni (Greene, 1995; Gaddek, 2002; Lhomme i in., 2004). Obliczone hydrogramy odpływu mogą być następnie wykorzystane jako informacja potrzebna do wykonania symulacji przepływu w miejskim systemie oprowadzania wód opadowych, który zwykle składa się zarówno z naturalnych cieków i zbiorników wodnych, jak i kanalizacji deszczowej. Tego typu podejście do modelowania przepływu w mieście jest szeroko rozpoznane w inżynierii sanitarnej, o czym świadczy znacza liczba komercyjnych programów obliczeniowych służących do tego typu symulacji. W systemach tych zwykle do opisu hydrodynamiki wykorzystuje się jednowymiarowe równania drugiego rzędu stosowane do brzeg spostrzeni, w tym do zagrożeń powodziowych, jak stwierdzono w doświadczeniach w postaci dwuwymiarowej (mapy powodziowej) dzięki wykorzystaniu systemów GIS.
Jednowymiarowe modele hydrodynamiki nie dostarczają jednak wystarczającej informacji o parametrach ruchu wody, szczególnie w sytuacjach, gdy w zlewni miejskiej dominuje przepływ powierzchniowy. Z taką sytuacją możemy mieć do czynienia, gdy w mieście brak jest systemu odprowadzania wód opadowych, lub gdy system ten ma zbyt małą przepustowość. Niezdołność do przejęcia wód przez systemy kanalizacyjne po deszczu nawałnym lub awarii budowlí hydrotechnicznej zlokalizowanej na terenie miasta prowadzi do zagrożenia powodziowego. Powierzchniowy przepływ wody na terenie miasta, wskutek zróżnicowanej topografii, pokrycia i zagospodarowania terenu, ma zwykle złożony charakter i wymaga co najmniej dwuwymiarowego (horyzontalnego) odwzorowania. Stąd w ostatnich latach zauważa się coraz większe zainteresowanie stosowaniem dwuwymiarowych modeli przepływu do symulacji powodzi w mieście. W tym celu autorzy stosują, podobnie jak w przypadku transformacji fali powodziowej w naturalnych dolinach rzek, różne matematyczne modele płaskiego przepływu wody, zarówno w formach uproszczo-nych (Aronica i Lanza, 2004; Aronica i Lanza, 2005; Yu i Lane, 2006a,b; Chen i in., 2005; Moramarco i in., 2005), jak i w postaci pełnych dwuwymiarowych równań de Saint-Venanta (Haider i in., 2003; Paquier i in., 2003; Hervouet i in., 2000; Guinot i Soares-Frazao, 2006, Mignon i in., 2006; Soares-Frazao i Zech, 2005; Hildén, 2005). Do ich rozwiązywania wykorzystywane są wymienione wcześniej, ogólnie znane metody stosowane dla równań różniczkowych cząstkowych.

Bogactwo form i dróg przepływu wody przez zlewnię zabudowaną powoduje nieustanne poszukiwanie coraz lepszych sposobów odwzorowania zagrożenia powodziowego w mieście. Szczególnie interesujące są prace, których autorzy podjęli próbę opisu przepływu wody w systemach ulic oraz interakcji przepływu wody między poszczególnymi elementami zlewni miejskiej. W pierwszym przypadku stosowane są zarówno modele uproszczone (konceptualne), w których pomniejsze ulice i zabudowa grupowane są w większe obiekty o zadanych charakterystykach transformacji przepływu (Hingray i in., 2000; Inoue i in., 2000), jak i jednowymiarowe modele hydrodynamiki w sieci kanałów otwartych (Toda i in., 2006; Vaes i in., 2004; Paquier i in., 2003) oraz dwuwymiarowe modele przepływu płaskiego (Calenda i in., 2003; Gourbesville i Saviole, 2002; Schmitt i in., 2004a,b; Aronica i Lanza, 2005). W modelowaniu zagrożeń powodziowych w mieście szczególnie miejsce zajmuje problem odwzorowania interakcji przepływu wody po powierzchni terenu i w sieci kanalizacji deszczowej. Na przestrzeni lat podejścia do tego problemu zmieniły się. Najprostszą metodą uwzględnienia wypływu wody z kanalizacji przez studnie i wpusty uliczne jest połączenie węzłów obliczeniowych jednowymiarowego modelu sieci kanalizacyjnej z obiektami o charakterze zbiorników retencyjnych reprezentujących powierzchnię terenu (Boonya-aroonnet, 2002). Przy takim podejściu przepływ wody po terenie nie jest modelowany wcale, a retencjonowana na powierzchni woda może powtórnie zasiąć seć kanalizacyjną przez te same, bądź inne węzły (Djordjevic i in., 1999, 2004; Nie i in., 2004), w zależności od warunków przepływu w kanalizacji. Do najbardziej zaawansowanych metod łączenia przepływu wód opadowych po powierzchni zlewni z systemami podziemnymi należą metody obliczeniowe, których autorzy dają do połączenia dwóch systemów i równoczesnego rozwiązywania dwuwymiarowej transformacji przepływu powierzchniowego wraz z symulacją przepływu w kanalizacji deszczowej. Zintegrowane modele zagrożenia powodziowego w mieście, zawierające w sobie także moduły obliczeń hydrologicznych, są obecnie intensywnie rozwijane, co wyraża się znaczną liczbą wydanych w ostatnich latach publikacji podejmujących ten temat (Hepping i in., 2000; Hsu i in., 2000; Lai i in., 2000; Schmitt i in., 2004a,b; Chen i in., 2005; Ettrich i in., 2004; Turner-Gillespie i in., 2003).
4.2. Modelowanie przepływu wód przez obszary zabudowane

Odrębny problemem matematycznego modelowania przejścia fali powodziowej przez miasto jest przypadek, gdy teren zabudowany jest tylko częścią obszaru przepływu wody, co powoduje dysproporcję między charakterystycznymi wymiarami zabudowy (np. długość ścian domów, szerokość ulic) a rozmiarem całego obszaru przepływu rozpatrywanego w modelu. W takiej sytuacji bardzo utrudnione jest przeprowadzenie spójnej dyskretyzacji przestrzennej obszarów naturalnych i zabudowanych (niezbędnej do rozwiązania równań przepływu dowolną metodą siatkową), co wynika z dużych różnic w rozmiarach elementów siatki. W takich przypadkach zabudowę miejską traktuje się często jako tzw. efekt podsiatkowy – rozmiarami mniejszy od najmniejszych elementów siatki przestrzennej. W podejściu tym poszczególne (nieciągłe) zabudowania odwzorowuje się, zastępując je większymi obszarami ciągłymi o zmienionych parametrach. Najprostszą metodą reprezentacji obszaru zabudowanego jest jego wyodrębnienie i przypisanie mu innego (znacznie większego niż fizyczny) współczynnika szorstkości terenu (Reiter, 2000; Yu i Lane, 2006) lub podwyższenie w tym rejonie rzędnej dna. Inne podejście, wykorzystujące analogię do opisu przepływu wody w ośrodku porowatym, polega na przyporządkowaniu obszarowi przepływu współczynnika porowatości, którego wartość określa stopień pokrycia terenu zabudowaniami i wprowadzeniu tego współczynnika do rozwiązywanych równań przepływu (Hervouet i in., 2000; Guinot i Soares-Frazao, 2006).

Podsumowując obecny stan wiedzy w dziedzinie modelowania zagrożeń powodziowych na terenach zurbanizowanych, można zauważyć bardzo duże zainteresowanie tym tematem, o czym świadczy znaczna liczba publikacji wydanych od początku XXI wieku. Można też stwierdzić, że większość modeli stosowanych do prognozowania transformacji przepływu przez poszczególne elementy zlewni miejskiej wywodzi się z równań hydrodynamiki przepływu wodnej płytkiej, w różnych wersjach, w zależności od celów prowadzonych analiz i dostępu do danych niezbędnych do wykonania symulacji. Do rozwiązania równań przepływu powierzchniowego – na którym skoncentrowano przedstawione w pracy badania – stosuje się zwykle te same metody, co w przypadku przepływu wody w naturalnych ciekach i dolinach, z modyfikacjami wynikającymi z konieczności uwzględnienia w opisie ruchu wody charakterystycznych cech przepływu szybkozmieniennego w skomplikowanych geometrycznie i topograficznie obszarach.
MODEL PRZEPŁYWU WODY PO TERENIE ZABUDOWANYM

W większości modeli propagacji fal wezbraniowych w naturalnych dolinach rzek, jak również na terenach zabudowanych, do opisu przepływu wody stosuje się równania fali dynamicznej, co opisano w poprzednim rozdziale. W niniejszej pracy wykorzystano wspomniane równania w wersji dwuwymiarowej.

5.1. Równania dwuwymiarowego przepływu wody płynkiej

Równania przepływu wody płynkiej wyprowadza się z zasad zachowania masy i zachowania ilości ruchu. Można je wyprowadzić z ogólnych równań hydrodynamiki, tzn. z równań Naviera-Stokesa oraz równania ciągłości (Sawicki, 1998) lub, jak to zaproponował Abbott (1979), z różniczkowej postaci zasad zachowania masy i pędu. Stosując pierwsze podejście, uzyskuje się następującą postać równań nieustalonego przepływu wody:

\[\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} + \frac{\partial (vh)}{\partial y} = 0, \]
\[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + g \frac{\partial h}{\partial x} - g(S_{ox} - S_{fx}) = 0, \]
\[\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + g \frac{\partial h}{\partial y} - g(S_{oy} - S_{fy}) = 0. \]

W powyższych równaniach symbole x i y reprezentują zmienne przestrzenne, t – czas, g – przyspieszenie ziemskie, h – głębokość, u i v – uśrednione wzdłuż głębokości horyzontalne składowe wektora prędkości, zaś So i Sf – odpowiednio spadki dna i spadki linii energii. Stosując do oszacowania wartości naprężeń na dnie formułę Manninga, spadki hydrauliczne, odpowiednio w kierunku x i y, można przedstawić jako:

\[S_{fx} = \frac{n^2 u \sqrt{u^2 + v^2}}{h^{4/3}}, \]
\[S_{fy} = \frac{n^2 v \sqrt{u^2 + v^2}}{h^{4/3}}. \]

Równania (5.1) oraz (5.2a, b) tworzą układ, który w zapisie macierzowym można przedstawić następująco:

\[\frac{\partial U}{\partial t} + A_1 \frac{\partial U}{\partial x} + A_2 \frac{\partial U}{\partial y} + S = 0, \]
5.1. Równania dwuwymiarowego przepływu wody płtykiej

gdzie:

\[
\begin{bmatrix}
h
\end{bmatrix}, \quad A_1 = \begin{bmatrix}
u & u & 0 \\
h & u & 0 \\
0 & u & 0
\end{bmatrix}, \quad A_2 = \begin{bmatrix}
v & 0 & 0 \\
0 & v & h \\
0 & g & v
\end{bmatrix}, \quad \mathbf{S} = \begin{bmatrix}
0 & -g(S_{xx} - S_{xt}) \\
-g(S_{yy} - S_{yt})
\end{bmatrix}.
\]
(5.5a, b, c, d)

Równania przepływu wody (5.1) i (5.2) zapisane są w tzw. formie niezachowawczej. Niewiadomymi w tych równaniach są prędkości \(u \) i \(v \) oraz głębokość wody \(h \). W przypadku przepływów szybkozmiennych lepiej operować jest jednostkowym natężeniem przepływu zamiast prędkością (Abbott, 1979; Cunge i in., 1980). Aby to zrealizować, należy przekształcić równania (5.2a) i (5.2b). Mnożąc równania ilości ruchu (5.2a) i (5.2b) przez głębokość warstwy wody \(h \), zaś równanie ciągłości (5.1) odpowiednio przez prędkość \(u \) lub \(v \), oraz dodając je parami, otrzymujemy:

\[
\frac{\partial (uh)}{\partial t} + \frac{\partial (v^2h)}{\partial x} + gh \frac{\partial h}{\partial x} + \frac{\partial (uvh)}{\partial y} - gh(S_{xx} - S_{xt}) = 0,
\]
(5.6a)

\[
\frac{\partial (vh)}{\partial t} + \frac{\partial (v^2h)}{\partial y} + gh \frac{\partial h}{\partial y} + \frac{\partial (uvh)}{\partial x} - gh(S_{yy} - S_{yt}) = 0.
\]
(5.6b)

Powyższe równania, zapisane w formie zachowawczej, tworzą wraz z równaniem ciągłości (5.1) układ postaci:

\[
\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{E}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} + \mathbf{S} = 0,
\]
(5.7)

gdzie:

\[
\begin{bmatrix}
h
\end{bmatrix}, \quad \mathbf{E} = \begin{bmatrix}
uh \\
\frac{0}{u^2h + 0.5gh^2} \\
vh
\end{bmatrix}, \quad \mathbf{G} = \begin{bmatrix}
vh \\
\frac{uvh}{v^2h + 0.5gh^2} \\
0
\end{bmatrix}, \quad \mathbf{S} = \begin{bmatrix}
0 & -g\left(S_{xx} - S_{xt}\right) \\
-g\left(S_{yy} - S_{yt}\right)
\end{bmatrix}.
\]
(5.8a, b, c, d)

Warunkiem rozwiązania układu równań różniczkowych cząstkowych jest poprawne postawienie problemu. Ogólnie o zagadnieniu można powiedzieć, że jest poprawnie postawione, gdy jego rozwiązanie istnieje, rozwiązanie to jest jednoznaczne, a także jest zależne w sposób ciągły od zadań warunków granicznych. Istnienie rozwiązania jest problemem bardzo poważnym, zaś uwodnienie tego faktu jest skomplikowane. Okazuje się jednak (Fletcher, 1991), że równania fizyki matematycznej, wynikające z zasad zachowania, mają rozwiązania, tak więc poprawność postawienia zagadnienia zależy głównie od właściwego doboru warunków granicznych. Sposób zadawania tych warunków zależy bezpośrednio od typu równania różniczkowego lub układu równań oraz struktury charakterystyk. Według
Godunowa (1975), w przypadku równań hiperbolicznych, na każdej granicy obszaru rozwiązania należy zadać tyle warunków, ile charakterystyk wchodzi do obszaru przez daną granicę (Szymkiewicz, 2000).

Na warunki graniczne składają się: warunek początkowy i warunki brzegowe. Pierszy z nich określa wartości funkcji w chwili początkowej, spełniające rozwiązujące równanie. W przypadku równań przepływu wody płynnej istnieją trzy rzeczywiste charakterystyki, stąd wynika konieczność zadania warunku początkowego w postaci trzech funkcji – dwóch składowych wektora prędkości i głębokości wody. Warunki brzegowe dotyczą zaś informacji o poszukiwanej funkcji na brzegach fizycznych obszaru rozwiązania. Analiza przebiegu charakterystyk dwuwymiarowych równań przepływu wody płynnej w ruchu spokojnym i ręcznym pozwala na określenie następujących zasad zadawania warunków brzegowych na brzegu obszaru (x, y) (Tan, 1992):

a) brzeg zamknięty – bez względu na rodzaj ruchu, jeden warunek brzegowy w postaci zerowej wartości składowej wektora prędkości w kierunku normalnym do brzegu;

b) brzeg otwarty

- w ruchu spokojnym:
 - napływ – dwa warunki brzegowe,
 - odpływ – jeden warunek brzegowy;

- w ruchu ręcznym:
 - napływ – trzy warunki brzegowe,
 - odpływ – nie zadaje się warunku brzegowego.

5.2. Numeryczne rozwiązanie równań przepływu wody płynnej

Po sformułowaniu matematycznego modelu przepływu wody należy wybrać metodę rozwiązania równań tworzących ten model. Numeryczne metody rozwiązania równań różniczkowych skąskowych oraz ich układów bazują zwykle na dyskretyzacji równań w przestrzeni, jak i w czasie. W rozwiązaniu numerycznym, opisanym w niniejszej pracy, dyskretyzację przestrzeni wykonano metodą ośmiokątnych, natomiast całkowanie równań w czasie przeprowadzono metodą różnic skąskowych. Pozostałe techniki obliczeniowe opracowano w taki sposób, aby zapewnić możliwość rozwiązania równań modelu w przypadku przepływu przez obszar zabudowany. Zastosowane metody numeryczne mają swój bogaty opis w literaturze przedmiotu. Z tego powodu w pracy przedstawiono wyłącznie podstawowe informacje o tych metodach. Jedynie w przypadku zastosowania specjalnych technik obliczeniowych dołączone szerszy opis.

5.2.1. Dyskretyzacja równań w przestrzeni metodą objętości skąskowych

Przedstawione w rozdziale 5.1 równania przepływu wody płynnej w formie zachowawczej (5.7) można zapisać w innej postaci następująco (LeVeque, 2002):

$$\frac{\partial U}{\partial t} + \nabla \cdot F + S = 0.$$

W równaniu tym wektor F reprezentuje sumę wektorów strumieni masy i prędkości E i G (5.8b,c), którą można zapisać jako:

$$F \cdot n = E \cdot n_x + G \cdot n_y,$$

W równaniu tym wektor F reprezentuje sumę wektorów strumieni masy i prędkości E i G (5.8b,c), którą można zapisać jako:
5.2. Numeryczne rozwiązanie równań przepływu wody płytkiej

gdzie n_x i n_y są składowymi wektora jednostkowego odpowiednio w kierunku x i y.

Aby skalować powyższe równanie w dwuwymiarowej przestrzeni (x, y) metodą objętości skończonych (LeVeque, 2002), należy wspomniąć ciągłą przestrzeń przetransformować do postaci dyskretną, zastępując ją komórkami obliczeniowymi. Ogólnie nie naleza się warunków na kształt komórek – muszą one jedynie całkowicie pokrywać obszar rozwiązania. Do najczęściej stosowanych należą siatki obliczeniowe zbudowane z czworoboków bądź trójkątów. Na rysunku 5.1 przedstawiono przykładowy podział obszaru przepływu na objętości skończone o kształcie trójkątów. Taka aproksymacja umożliwia dokładną reprezentację obszaru rozwiązania wraz z możliwością precyzyjnego odtworzenia kształtu jego brzegu. Z tego powodu zastosowano ją w opisanym w pracy rozwiązaniu równań modelu przepływu wody płytkiej.

Rys. 5.1. MOS – dyskretyzacja dwuwymiarowego obszaru przepływu

W wyniku skalowania równania (5.9) w każdej objętości skończonej i oraz zastosowania przekształcenia Ostrogradskiego-Gaussa otrzymuje się równanie:

$$\frac{\partial U_i}{\partial t} \Delta A_i + \int_{L_i} (\mathbf{F} \cdot \mathbf{n}) dL + \int_{S_i} SdA = 0,$$ (5.11)

gdzie ΔA_i i L_i są odpowiednio powierzchnią oraz brzegiem komórki i. Pierwsza całka w powyższym równaniu reprezentuje adwekcyjne strumienie masy i pędu przenoszone przez brzeg komórki. Druga całka obejmuje człony źródlowe występujące w równaniach przepływu wody płytkiej.

Każdą z całek występujących w równaniu (5.11) można zastąpić sumą trzech (w przypadku trójkątnych komórek obliczeniowych) składowych, co pozwala przepisać to równanie jako

$$\frac{\partial U_i}{\partial t} \Delta A_i + \sum_{r=1}^{3} (\mathbf{F}_r \cdot \mathbf{n}_r) \Delta L_r + \sum_{r=1}^{3} S_r \Delta A_r = 0,$$ (5.12)

gdzie \mathbf{F}_r jest wektorem numerycznie oszacowanych na r-tym brzegu komórki strumieni masy i pędu, natomiast ΔL_r oznacza długość brzegu komórki. Iloczyny o postaci $S_r \Delta A_r$ tworzą składowe członów źródłowych przyporządkowane do danego brzegu komórki.

Wartości strumieni \mathbf{F}_r w równaniu (5.12) muszą być określone na każdej ze ścianek komórki obliczeniowej. Strumienie numeryczne należy wyznaczyć na ścianie, która rozdziela dwie komórki o różnych, ale stałych parametrach wewnątrz każdej z nich. Najprostszym sposobem obliczenia strumienia numerycznego jest zastosowanie albo uśrednienia arytmetycznego...

Aproksymowane numerycznie strumienie masy i pędu, przepływające przez r-tą ściankę komórki i (rys. 5.1) można uzależnić, jak wspomniano wcześniej, od wartości zmiennych U_i w punkcie styku dwóch sąsiednich komórek i zapisać jako:

$$F^r_{num} \cdot \mathbf{n} = \mathbf{F}(U_i) \cdot \mathbf{n}.$$ (5.13)

Wykorzystując wspomnianą metodę rozwiązywania zlinearyzowanego zagadnienia Riemanna, strumień numeryczny (5.13) przypływający przez r-tą ściankę komórki można przedstawić następująco:

$$F^r_{num} \cdot \mathbf{n} = \frac{1}{2}(\mathbf{F}_R + \mathbf{F}_L) - \frac{1}{2} \sum_{k=1}^{3} \alpha_k \left[\mathbf{A} \right]_{k} \mathbf{n}_k,$$ (5.14)

gdzie α_k i \mathbf{n}_k są odpowiednio wartością tymczasową wartością prawą wektora wlastną macierzy $\mathbf{A} = \partial \mathbf{F}/\partial \mathbf{U}$, obliczony na podstawie następujące uśrednionej parametrów przepływu na ściance komórki:

$$\bar{h} = \frac{h_L + h_R}{2} \Rightarrow \bar{c} = \sqrt{\frac{gh}{n}},$$

$$\bar{u} = \sqrt{\frac{h_L u_L + h_R u_R}{h_L + h_R}},$$

$$\bar{v} = \sqrt{\frac{h_L v_L + h_R v_R}{h_L + h_R}},$$ (5.15a, b, c)

gdzie indeksy L i R oznaczają dwie rozpatrywane komórki obliczeniowe, między którymi oblicza się strumienie.

Współczynniki α_k występujące w formule (5.14) są zdefiniowane następująco:
5.2. Numeryczne rozwiązanie równań przepływu wody płyniejk

\[\bar{\alpha}_1 = \frac{\Delta h}{2} - \frac{1}{2\tau} \left[\Delta(hu) n_x + \Delta(hv) n_y - (\bar{u} n_x + \bar{v} n_y) \Delta h \right], \]
\[\bar{\alpha}_2 = \frac{\Delta h + \Delta h\bar{u} - \Delta h\bar{v}}{2\tau} - \left[\bar{u} n_x + \bar{v} n_y \right], \]
\[\bar{\alpha}_3 = \frac{\Delta h}{2} + \frac{1}{2\tau} \left[\Delta(hu) n_x + \Delta(hv) n_y - (\bar{u} n_x + \bar{v} n_y) \Delta h \right], \]

gdzie: \(\Delta h = h_R - h_L \) a \(\Delta(hu) = h_u \bar{h}_R - h_u \bar{h}_L \).

Strumień numeryczny (5.14) składa się z dwóch części. Pierwsza jest średnią arytmetyczną strumieni z dwóch sąsiednich komórek, natomiast druga jest poprawką obliczaną schematem „pod prąd”, zapewniającą uwzględnienie informacji z siatki węzłów obliczeniowych w zależności od przebiegu charakterystyki.

W równaniu (5.12), prócz strumieni \(\mathbf{F}_n \), należy również aproksymować wartości członów źródłowych \(\mathbf{S}_n \) na każdej ze ścianek komórki obliczeniowej. W przypadkach ruchu szybkozmiennej w równaniach zachowania pędu podstawową rolę pełnią dwa rodzaje członów źródłowych, związane odpowiednio z kształtem dna oraz oporami ruchu. W przypadku zastosowań do aproksymacji strumieni masy i pędu schematu Roego (1981) w analogiczny sposób należy obliczać także członek grawitacyjny postaci \(-ghS_o\). Należy wykonać to tak, aby zapewnić zgodność numerycznej aproksymacji spadku dna i czlonu typu 0,5 \(gh^2 \) zawartego w strumieniu \(\mathbf{F} \) (Nujic, 1995). Metodę tą, zaproponowaną przez Bermudez i Vazquez (1994) dla przepływu jednowymiarowego, wykorzystano także dla dwuwymiarowych równań de Saint-Venanta (Szydłowski, 2003). Stosując tę metodę, każdą część czlony źródłowych \(S_o \), występującego w formule 5.12, można aproksymować na \(r \)-tej ściance tzw. źródłem numerycznym. Dla dwóch sąsiednich komórek \((L, R) \) źródło numeryczne na ściance pomiędzy nimi można przedstawić jako

\[S_n = (1 - |A|^{-1}) \mathbf{S}(U_L, U_R, n), \]

gdzie \(I \) jest macierzą jednostkową, natomiast \(\mathbf{S} \) oznacza wektor czlonów źródłowych policzonych na podstawie średnich wartości parametrów wg (5.15), określonych na \(r \)-tej ścianie komórki. Całkowitą wartość źródła numerycznego dla danej objętości skośnej otrzymuje się po zsumowaniu wszystkich trzech (w przypadku trójkątnych komórek obliczeniowych) części aproksymowanego czlonu źródłowego.

W modelowaniu przepływu powierzchniowego szczególne miejsce zajmuje problem propagacji fali wezbraniowej po suchym dniu obszaru przepływu. Aby uniknąć stosowania złorzonych algorytmów sklejenia ruchomych, tzn. zmiennych w trakcie przesuwnienia się czoła fali, granic obszaru obliczeniowego, w opracowanym algorytmie rozpatruje się cały, potencjalny obszar przepływu jednocześnie, bez względu na to, czy w danej chwili przepływ odbywa się nad całą jego powierzchnią, czy tylko jej częścią. Podejście takie wymusza jednak konieczność przyjęcia, na suchych fragmentach obszaru, minimalnej głębokości wody. Wynika to z włączenia szerokości dna do modelu matematycznego poprzez zastosowanie formuły Manninga (5.3), w której miarowniku występuje głębokość wody. Jednak taki sposób przedstawienia czlonu źródłowego reprezentującego opory ruchu daje dobre rezultaty tylko w przypadku ruchu spokojnego. W sytuacji gdy przepływ jest rzący, o relatywnie dużych prędkościach i małych głębokościach, zastosowanie formuły Manninga prowadzi często do niefizycznych efektów w rozwiązaniu numerycznym. W celu uniknięcia wspomnianych trudności numerycznych rozwiązania równań płaskiego przepływu wody, zaproponowano metodę wykorzystującą dekompozycję równań zachowania masy i pędu względem procesów fizycznych.
Układ dwuwymiarowych równań przepływu (5.7) można zapisać w następującej postaci macierzowej:

\[
\frac{\partial \mathbf{U}}{\partial t} = \mathbf{X}_{(1)} + \mathbf{X}_{(2)},
\]

(5.18)

gdzie \(\mathbf{U} \) jest identyczne z (5.8a), natomiast

\[
\mathbf{X}_{(1)} = \begin{pmatrix}
\frac{\partial (ut)}{\partial x} & \frac{\partial (vt)}{\partial y} \\
\frac{\partial (uvh)}{\partial x} & \frac{\partial (vh)}{\partial y} - gh \frac{\partial z}{\partial x} \\
\frac{\partial (v^2h + 0.5gh^2)}{\partial y} & - gh \frac{\partial z}{\partial y}
\end{pmatrix},
\]

(5.19)

\[
\mathbf{X}_{(2)} = \begin{pmatrix}
-ghu \sqrt{u^2 + v^2} \\
-ghv \frac{N}{N^2}
\end{pmatrix}.
\]

(5.20)

Zgodnie z ideą dekompozycji względem procesów fizycznych, równanie (5.18) możnaскаłkować w czasie w dwóch etapach. W pierwszym należy rozwiązać równanie

\[
\frac{\partial \mathbf{U}_{(1)}}{\partial t} = \mathbf{X}_{(1)}
\]

(5.21a)

z warunkiem początkowym \(\mathbf{U}_{(1)}^{n} = \mathbf{U}_{(1)}^{n-1} \), a następnie równanie

\[
\frac{\partial \mathbf{U}_{(2)}}{\partial t} = \mathbf{X}_{(2)}
\]

(5.22b)

z warunkiem początkowym \(\mathbf{U}_{(2)}^{n} = \mathbf{U}_{(1)}^{n-1} \). Przy takim podejściu, poszukiwanym rozwiązaniem na nowym poziomie czasowym \(n + 1 \), czyli w chwili \(t + \Delta t \), będzie wartość \(\mathbf{U}_{(1)}^{n+1} = \mathbf{U}_{(2)}^{n} \). W przypadku równania (5.18) w pierwszym etapie rozwiązania wykorzystuje się wszystkie człony równania, oprócz członu źródłowego związanego z szorstkością, a w drugim uwzględnia się tylko ten człon.

W drugim etapie całkowania pozostają do rozwiązania dwa równania dla wydatków jednostkowych \(q_x = u \cdot h \) oraz \(q_y = v \cdot h \). Całkując te dwa równania niejawnym schematem MRS otrzymuje się w wybranej komórce obliczeniowej \(i \):

\[
\frac{q_{x(2)}^{n+1} - q_{x(1)}^{n+1}}{\Delta t} = -g q_{z(2)}^{n+1} \sqrt{\left(q_{x(2)}^{n+1}\right)^2 + \left(q_{y(2)}^{n+1}\right)^2} \frac{1}{h_{(2)}^{n+1}},
\]

(5.22a)
5.2. Numeryczne rozwiązanie równań przepływu wody płynącej

\[
\frac{q_{x(2)k}^{n+1} - q_{x(2)k}^n}{\Delta t} = -g q_{y(2)k}^n \sqrt{\left(q_{x(2)k}^n\right)^2 + \left(q_{y(2)k}^n\right)^2} \frac{n^2}{(h_{n+1}^{y(2)k})^{3/2}}. \quad (5.22b)
\]

Indeks \(n + 1 \) oznacza nowy poziom czasowy, na którym poszukiwane są wartości wydatków i głębokości, natomiast indeksy (1) i (2) reprezentują odpowiednio pierwszy i drugi etap całkowania w przedziale \((t, t + \Delta t)\). Po podzieleniu obustronnie powyższych równań odpowiednio przez \(q_{x(2)k}^n \) oraz \(q_{y(2)k}^n \) otrzymuje się:

\[
\frac{q_{x(1)k}^{n+1}}{q_{x(2)k}^n} - 1 = K_{(2)k}, \quad \frac{q_{y(1)k}^{n+1}}{q_{y(2)k}^n} - 1 = K_{(2)y}, \quad (5.23a,b)
\]

gdzie

\[
K_{(2)y} = g \Delta t^2 \frac{\sqrt{\left(q_{x(2)k}^n\right)^2 + \left(q_{y(2)k}^n\right)^2}}{(h_{n+1}^{y(2)k})^{3/2}}. \quad (5.24)
\]

Przyjmując

\[
\alpha = \frac{q_{x(2)k}^{n+1}}{q_{x(1)k}^n}, \quad \frac{q_{y(2)k}^{n+1}}{q_{y(1)k}^n}, \quad (5.25)
\]

można zapisać

\[
K_{(2)i} = \alpha K_{(1)i}. \quad (5.26)
\]

Po wstawieniu (5.26) do (5.23a) bądź (5.23b) można określić współczynnik \(\alpha \) z rozwiązania równania kwadratowego:

\[
K_{(1)i} \alpha^2 + \alpha - 1 = 0. \quad (5.27)
\]

Drugi etap całkowania w czasie sprowadza się do znalezienia dodatniego pierwiastka równania (5.27) \((\alpha > 0, \text{gdy wydatki w równaniu (5.25) muszą być tego samego znaku)}\) oraz wykonania korekty wydatku w każdej komórce obliczeniowej według formuły:

\[
q_{x(2)k}^{n+1} = \alpha q_{x(2)k}^n = \alpha q_{x(1)k}^n, \quad (5.28a)
\]

\[
q_{y(2)k}^{n+1} = \alpha q_{y(2)k}^n = \alpha q_{y(1)k}^n. \quad (5.28b)
\]

5.2.2. Całkowanie równań w czasie

W celu rozwiązania równań modelu zjawiska nieustalonego, jakim jest również propagacja fali wezbraniowej, należy, po dyskretyzacji przestrzennej, sformułować je w czasie. Metody numerycznego całkowania w czasie różnią się sposobem aproksymacji pochodnej \(\partial U/\partial t \). Szeroką gamę schematów, uwzględniających różne sposoby dyskretyzacji, przedstawia Tan (1992). W modelowaniu przepływów szybkozmiennej stosowane są głównie schematy jawne, ponieważ uwalniają one proces obliczeniowy od rozwiązywania dużych
układów równań algebraicznych, co znacznie skraca i upraszcza obliczenia. Nie ma jednak żadnych przeciwskazań, by równanie (5.18) całkować w czasie schematami niejawnymi, co może być szczególnie użyteczne w przypadku modelowania przepływu jednowymiarowego (Delis i in., 2000; Szydlowski, 2004).

Układ równań (5.18) można przedstawić inaczej jako

\[\frac{\partial \mathbf{U}}{\partial t} = \mathbf{X}, \]
(5.29)

gdzie wektor \(\mathbf{X} \) ma postać zgodną z zależnością (5.19). Jego całkowanie w przedziale \((t, t + \Delta t) \) pozwala zapisać równanie (5.29) w postaci

\[\mathbf{U}^{n+1} = \mathbf{U}^n + \int_{t}^{t + \Delta t} \mathbf{X} \, dt. \]
(5.30)

Zastąpienie całki odpowiednią formułą przybliżoną prowadzi do ogólnego, dwupoziomowego schematu jednokrokowego:

\[\mathbf{U}^{n+1} = \mathbf{U}^n + \Delta t \left(\Theta \mathbf{X}^{n+1} + (1 - \Theta) \mathbf{X}^n \right). \]
(5.31)

W schemacie tym indeksy \(n \) oraz \(n + 1 \) oznaczają odpowiednio wartości funkcji ze znanego i odległego o \(\Delta t \) poziomu czasowego. Współczynnik wagowy \(\Theta \) pozwala na zmianę rodzaju schematu od jawnego (\(\Theta = 0 \)) do niejawnego (\(\Theta = 1 \)).

W opracowanym rozwiązaniu wykorzystano jawny schemat dwukrokowy, który można zapisać następująco:

\[\mathbf{U}^p = \mathbf{U}^n + 0.5\Delta t \mathbf{X}^n, \]
(5.32a)

\[\mathbf{U}^{n+1} = \mathbf{U}^n + \Delta t \mathbf{X}^p. \]
(5.32b)

Całkowanie w czasie według powyższej formuły odbywa się w dwóch etapach. W pierwszym kroku do obliczenia pośrednich wartości funkcji \(\mathbf{U}^p \) wykorzystuje się schemat jawny pierwszego rzędu (schemat Eulera dla \(\Theta = 0 \)). W kroku drugim oblicza się końcową wartość funkcji, używając do tego strumieni \(\mathbf{F}^p \) określonych na podstawie wartości funkcji z kroku pierwszego. Schemat ten jest aproksymacją drugiego rzędu w czasie. Wymagania stabilności ograniczają wartość kroku całkowania \(\Delta t \). Ograniczenie to wyrażone jest liczbą Couranta, która w przypadku całkowania równań dwuwymiarowego przepływu wody musi spełniać warunek (Potter, 1977):

\[\text{Cr} = \frac{\max \left(\sqrt{u_i^2 + v_i^2} + \sqrt{gh_i} \right)}{\min(d_i)/\Delta t} \leq \frac{1}{\sqrt{2}}, \]
(5.33)

gdzie \(d_i \) reprezentuje wszystkie odległości pomiędzy środkami ciężkości wybranej objętości skośnej oraz objętości sąsiadów.

5.2.3. Uwzględnienie warunków granicznych

Zasady zadawania warunków granicznych niezbędnych do rozwiązania równań przepływu wody płynkiej przedstawiono w rozdziale 5.1. Mimo że zasady te są jasne, to jednak
5.2. Numeryczne rozwiązanie równań przepływu wody płatkowej

w przypadku numerycznego rozwiązania równań modelu MOS właściwe przyjęcie warunków jest dość kłopotliwe. Zadanie warunku początkowego nie niesie ze sobą specjalnych trudności i sprowadza się do przyjęcia dla chwili początkowej wartości głębokości strumienia i składowych prędkości wewnątrz każdej komórki obliczeniowej. Uwzględnienie warunków brzegowych wymaga nieco szerszego komentarza.

Ogólnie cały brzeg obszaru przepływu można podzielić odcinkami na części zamknięte i otwarte. W opracowanym rozwiązaniu na brzegu zamkniętym przyjmuje się warunek w postaci tzw. „pełnego poślizgu” (ang. *slip boundary*). Termin ten oznacza, że składowa wektora prędkości w kierunku normalnym do brzegu przyjmuje wartość zero. Zerować musi się również pochodna składowej stycznej do brzegu w wzmiankowanym kierunku. Niestety, w MOS nie ma możliwości zadania jakiejkolwiek wartości funkcji bezpośrednio na brzegu komórki. Wynika to z tego, że węzły obliczeniowe leżą wewnątrz komórek, a nie na ich brzegach (rys. 5.2).

Aby więc zadać warunek brzegowy, trzeba obliczyć odpowiedni strumień na brzegu obszaru. Można w tym celu zdefiniować dodatkową (fikcyjną) komórkę położoną poza obszarem rozwiązania (rys. 5.2), w której trzeba tak zadać parametry przepływu, by uzyskane strumienie były zgodne z żadanym warunkiem brzegowym. W takim przypadku, aby zadać warunek na brzegu zamkniętym, należy przyjąć wartości parametrów przepływu w komórce poza obszarem (j) następująco:

\[h_j = h, \quad u_{nj} = -u_n, \quad u_{sj} = u_s, \]

gdzie \(h \) jest głębokością warstwy wody, a \(u_n \) i \(u_s \) oznaczają odpowiednio normalną i styczna do brzegu składową prędkości. Dysponując tymi wartościami można obliczyć – zgodnie z przedstawioną wcześniej procedurą Roego – strumień adwekcyjny odpowiadający warunkowi poślizgu na brzegu.

W podobny sposób można rozwiązać problem warunku brzegowego na odcinkach brzegu otwartego. Sprawą kluczową jest tu właściwe przyjęcie wartości parametrów w komórce leżącej poza obszarem obliczeniowym (rys. 5.3). Liczba i sposób wyznaczenia tych parametrów muszą odpowiadać rodzajowi przepływu przez brzeg. W przypadku ruchu
rwącego zadanie jest dość proste i sprowadza się do przyjęcia w komórce j trzech znanych
z warunku brzegowego funkcji $h(t)$, $u(t)$ i $v(t)$ w tracie dopływu do obszaru obliczeniowego
lub przesunienia wartości parametrów przepływu z komórki i (wewnętrz obszaru) do j (na
zewnętrz obszaru) podczas odpływu.

Rys. 5.3. Komórki obliczeniowe (istniejąca – i oraz fikcyjna – j) wraz z wektorami prędkości
na otwartym brzegu obszaru przepływu

Nieco bardziej skomplikowana sytuacja występuje, gdy przepływ przez brzeg otwarty
ma charakter spokojny. W tym przypadku, przy napływie wody do obszaru, z warunków
brzegowych znane są tylko dwie funkcje – na przykład dwie składowe wektora prędkości
normalnej do brzegu. Trzecią (przykładowo głębokość) należy określić w inny sposób.
W tym celu można wykorzystać niezmiennik Riemanna (Cunge i in., 1980; Tan, 1992)
i równanie

$$un_j - 2\sqrt{gh_j} = R_i,$$

(5.35)

gdzie R_i oznacza wartość niezmiennika obliczoną na podstawie znanych wartości parametrów
z komórki i. W taki sam sposób można określić, potrzebne do obliczenia strumieni
przez brzeg, parametry ruchu podczas odpływu. W tym przypadku, zadany warunek brze-
gowy określa tylko jedną wielkość (na przykład głębokość). Pozostałe można oszacować
z równania

$$un_j + 2\sqrt{gh_j} = R_i,$$

(5.36)

gdzie R_i, jak poprzednio, wynika z wartości parametrów z komórki wewnętrznej i.
Rozdział 6

LABORATORYJNE I NUMERYCZNE BADANIA PRZEPŁYWU WODY NA TERENIE ZABUDOWANYM

Jak wcześniej stwierdzono, najbardziej rozpowszechnionym matematycznym modelem propagacji fal wezbraniowych są równania de Saint-Venanta. Jest to model przepływu wolnozmiennego, ale – jak okazało – daje on także zadowalające wyniki obliczeń przepływu w warunkach ruchu szybkozmiennego. Potwierdzają to liczne, zweryfikowane zastosowania tego modelu, wykorzystywane do symulacji przepływów katastrofalnych w naturalnych dolinach rzek i na terenach zalewowych, co opisano w rozdziale 4. Wątpliwości nasuwają się jednak w przypadku, gdy model ten stosowany jest do odwzorowania szybkozmiennego przepływu powierzchniowego przez obszar zabudowany. Przepływ taki charakteryzuje się dużą intensywnością występowania zjawisk lokalnych, co potwierdzają liczne, zweryfikowane zastosowania tego modelu, wykorzystywane do symulacji przepływów katastrofalnych w naturalnych dolinach rzek i na terenach zalewowych, co opisano w rozdziale 4.

Prócz stacjonarnych i ruchomych odskoków hydraulicznych, naturalnie związanymi z przepływem szybkozmiennym, w trakcie przepływu ulicami i między budynkami powstają także odbicia i załamania fal, nagłe spięcia i depresje zwierciadła, czy też cyrkulacje i strefy martwe. Z formalnego punktu widzenia uzasadnia się opinia, że równania de Saint-Venanta nie są odpowiednim modelem cełości tego zjawiska, ponieważ przepływ nie spełnia podstawowych założeń, przyjętych w trakcie wyprowadzania równań. Przykładowo, pionowe składowe prędkości nie muszą być pomijalne małe, co skutkuje występowaniem pionowych przyspieszeń, a rozkład ciśnienia wzdłuż głębokości może odbiegać od hydrostatycznego.

Wspomniane wątpliwości nasuwają pytanie, czy z praktycznego punktu widzenia model de Saint-Venanta w ogóle nadaje się do odwzorowania ruchu wody w obszarze zabudowanym, a jeżeli tak, to jaka jest jakość uzyskiwanych wyników? Aby opowiedzieć na te pytania, niezbędne było przeprowadzenie i porównanie laboratoryjnych i numerycznych badań zjawiska. Wstępne rozpoznanie zjawisk towarzyszących przepływowi przez obszar zabudowany oraz wstępną weryfikację obliczeń numerycznych przepływu przeprowadzono, konfrontując wyniki symulacji z pomiarami prowadzonymi w laboratorium hydraulicznym Polo Idrulico et Strutturale (ENEL-CESI) w Mediolanie we Włoszech. Prowadzone tam badania, których wyniki dopiero niedawno opublikowano (Zech i Soares-Frazao, 2007), były częścią europejskiego projektu IMPACT (ang. Investigation of Extreme Flood Processes & Uncertainty). Uzyskane wyniki spowodowały rozszerzenie zakresu badań eksperymentalnych. W tym celu zbudowano własne stanowisko pomiarowe w Laboratorium Hydrodynamiki i Inżynierii Środowiska Politechniki Gdańskiej, które umożliwiło weryfikację wyników numerycznych symulacji przepływów w różnych wariantach zabudowy.

6.1. Badania przepływu wody na terenie zabudowanym w laboratorium hydraulicznym ENEL-CESI

Badania eksperymentalne propagacji gwałtownej fali wezbraniowej przez model regularnie zabudowanego miasta przeprowadzono w laboratorium hydraulicznym PIS ENEL.
w Mediolanie (Testa i in., 2007). Początkowo model zbudowany w skali 1:100 służył do badań transformacji fali powodzowej powstającej po awarii zapory wodnej (Morris, 2000). Betonowy model pięciokilometrowej doliny rzeki Toce, położonej we włoskich Alpach, zbudowano na otwartym terenie, obok budynków laboratorium (rys. 6.1).

Instalacja miała długość 50 m, a szerokość 11 m. Na modelu odtworzono koryto rzeki, tereny zalewowe i niektóre szczegóły geometrii doliny, takie jak polder, dwa mosty, drugą zaporę oraz niektóre zabudowania. W celu wykonania pomiarów zmian głębokości zainstalowano wzdłuż wymodelowanej doliny sondy pomiarowe. Geometrię i rzeźbę terenu zdefiniowano w postaci numerycznego modelu terenu, pokrywając model kwadratową siatką o wymiarze oczka 0,05 m. Dodatkowo przyjęto, że dno doliny jest nierozmywalne i charakteryzuje się stałą szorstkością o współczynniku Manninga \(n = 0,0162 \) m\(^{1/3}\) s.

W celu przeprowadzenia badań przepływu przez model miasta zaadaptowano stanowisko laboratoryjne (rys. 6.1), wykorzystując pierwsze 6 m betonowego koryta rzeki. Na dnie ustawiono betonowe modele domów w postaci kostek o boku 0,15 m. Aby uprościć strukturę przepływu, obszar zabudowany oddzielono od brzegów doliny dwiema murowanymi ściankami, równoległymi do osi doliny. Pozostałe cechy doliny pozostawiono bez zmian. Do potrzeb weryfikacji obliczeń numerycznych udostępniono wyniki pomiarów.
6.1. Badania przepływu wody na terenie zabudowanym w laboratorium …

W celu przeprowadzenia obliczeń symulacyjnych obszar przepływu pokryto siatką numeryczną złożoną z 5185 trójkątnych komórek obliczeniowych (rys. 6.4). Aby zwiększyć dokładność obliczeń, w okolicach zabudowy siatkę lokalnie zagęszczono. Długości boków komórek obliczeniowych zmieniają się od 0,04 m w okolicy budynków do 0,08 m na brzegach obszaru przepływu. Warunki graniczne zadano zgodnie z przeprowadzonym eksperymentem. Warunek początkowy określono, zakładając brak przepływu w całym obszarze obliczeniowym – dno pokryte fikcyjną warstwą wody o grubości (głębokości) 0,0001 m. Ze względu na spokojny (nadkrytyczny) dopływ wody do modelu, warunek brzegowy w przekroju napływowym zadano w postaci prędkości w kierunku normalnym do brzegu. Informację tę opracowano na podstawie pomiaru natężenia dopływu i pomiarów głębokości z punktów P1 i P2. Warunek na brzegu zamykającym obszar określono, zakładając wietrzący (podkrytyczny), swobodny odpływ wody poza obszar przepływu. Pozostałe granice przyjęto jako brzeg zamknięty.
Zabudowania uwzględniono, wyłączając je z obszaru przepływu. Obliczenia przeprowadzono z krokiem czasowym $\Delta t = 0,01$ s, kończąc symulację po 60 s trwania procesu. Wyniki zmierzonych i obliczonych zmian głębokości w niektórych punktach kontrolnych przedstawiono na rysunku 6.5. Można zauważyć, że praktycznie uzyskane wyniki – bez względu na lokalizację – w kolejnych punktach od P3 do P10 są zgodne z pomiarami.

![Obliczone i zmierzone zmiany głębokości wody w punktach kontrolnych](image)

Rys. 6.5. Obliczone (-) i zmierzone (+) zmiany głębokości wody w punktach kontrolnych

Analizując pomiary i obliczenia, można zaobserwować pewne charakterystyczne zjawiska hydrauliczne pojawiające się w przepływie przez obszar zabudowany. Punkty pomiarowe P3 i P4 zlokalizowane są bezpośrednio przed pierwszym rzędem zabudowań (rys. 6.2). Czoło fali, w warunkach ruchu rzącego, dociera do tego miejsca po około 11 s. W wyniku zderzenia ze ścianami budynków oraz dławienia przepływu, występuje spiętrze-
nie wody, którego towarzyszy znaczny spadek prędkości. Następnie formuje się odkok hydrauliczny, który w późniejszym czasie przesuwa się pod prąd, w kierunku przekroju dopływowego. W punkcie P4 (rys. 6.5) można też zauważyć, że jeden z wyników pomiarów głębokości znacznie przekracza pozostałe, jak również wartości obliczone. Wynika to prawdopodobnie z zarejestrowania przez przyrząd pomiarowy zjawiska rozbryzgu wody po uderzeniu w przeszkodę, które oczywiście nie może być opisane i odwzorowane modelem przepływu płaskiego.

Punkt P10 leży w dolnej części obszaru przepływu, poniżej ostatniego rzędu zabudowy. Punkt ten znajduje się w strefie cyrkulacji i jest pod wpływem warunków hydraulicznych występujących na odpływie z modelu. Rodzaj ruchu zmienia się na tym brzegu ze spokojnego w rwący i odwrotnie, co utrudnia właściwe zadanie warunku brzegowego i skutkuje niewielką, lecz zauważalną, rozbieżnością pomiarów i obliczeń.

Należy podkreślić, że w obliczeniach prawidłowo została odtworzona wartość prędkości propagacji czoła fali na obszarze niepokrytym wodą, co wynika z widocznej na wykresach (rys. 6.5) zgodności czasu docierania frontu fali do poszczególnych punktów kontrolnych.

Opisane wyniki badań wstępnych potwierdzają hipotezę, iż równania de Saint-Venanta, chociaż nie są pełnym modelem przepływu ze swobodną powierzchnią, to jednak umożliwiają symulację przepływu w obszarze zabudowanym, odtwarzając podstawowe zjawiska hydrauliczne towarzyszące ruchowi szybkozmiennemu w złożonym geometrycznie obszarze przepływu.
6.2. Badania przepływu wody na terenie zabudowanym w laboratorium hydraulicznym Politechniki Gdańskiej

Wstępne wnioski dotyczące możliwości wykorzystania równań de Saint-Venanta w modelowaniu przepływu powierzchniowego w mieście wymagały potwierdzenia oraz określania ewentualnych praktycznych granic stosowalności tego modelu. Stąd zdecydowano się na podjęcie własnych pomiarów laboratoryjnych, stanowiących materiał do weryfikacji prowadzonych obliczeń.

W celu wykonania badań eksperymentalnych przygotowano i wyposażyono stanowisko umożliwiające badanie przepływu przez obszar o zmiennej konfiguracji zabudowy. Przeprowadzono serie eksperymentów polegających na wywoływaniu przepływu przez obszar imitujący zabudowany budynkiem teren potencjalnej powodzi. Przepływ był efektem naglej uwolnienia wody ze zbiornika retencyjnego, co odpowiada sytuacji podobnej do uszkodzenia wału przeciwpowodziowego lub zapory. Badano różne scenariusze przepływu, odpowiadające zmiennej konfiguracji i gęstości budynków oraz różnym kierunkom napływu czoła fal powodziowej na pierzężę zabudowy. Należy podkreślić, że celem badań przeprowadzonych w laboratorium nie było wykonanie pełnego modelu fizycznego rozpatrywanego zjawiska. W pracy nie wykonano modelu zabudowy miejskiej w założonej skali geometrycznej i nie analizowano zjawiska przepływu według zasad modelowania i kryteriów podobieństwa fizycznego (Zierep J., 1978). Oznacza to, że w trakcie badań nie analizowano zjawisk skalowych, a parametry przepływu przyjmowano w skali 1:1. Również późniejsze symulacje numeryczne wykonywane były w obszarze przepływu o tych samych wymiarach geometrycznych, co stanowisko laboratoryjne. Ten sposób weryfikacji obliczeń można uznać za wystarczający, bowiem bez względu na różnicę wymiarów stanowiska badawczego i rzeczywistych obszarów zalewowych, ruch wody jest opisany tymi samymi równaniami hydrodynamiki.

6.2.1. Opis stanowiska pomiarowego i metodyki pomiarów

Stanowisko pomiarowe, na którym prowadzono badania eksperymentalne, zbudowano w Laboratorium Hydrauliki i Inżynierii Środowiska Politechniki Gdańskiej. Lokalizację i przygotowanie miejsca pod budowę oraz ogólny widok stanowiska pokazano na rys. 6.7. Takie umiejscowienie instalacji pozwoliło wykorzystać istniejący układ hydrauliczny zasilania laboratorium w wodę. Obiegi wody przez większość stanowiska laboratoryjnych odbywały się w układzie zamkniętym. Podstawę układu stanowi zbiornik żelbetowy o pojemności ok. 300 m³, znajdujący się na poziomie piwnicy, z którego woda przez układ pomp w pompowni transportowana jest do stalowych zbiorników o pojemnościach ok. 30 m³ i 20 m³, znajdujących się na wysokości ok. 5 i 10 m. Zbiorniki te wyposażone są wewnątrz w koryta przelewowe, umożliwiające utrzymanie stałego poziomu wody podczas pracy całego układu. Woda jest rozprowadzana rurowiagami ze zbiorników grawitacyjnie na stanowiska badawcze znajdujące się w hali laboratoriowej. Ze stanowisk woda odpływa grawitacyjnie do kanałów powrotnych, umiejscowionych pod posadzką laboratorium, skąd spływa do zbiornika głównego. Nadmiar wody z koryt przelewowych odprowadzany jest rurowiagiem powrotnym do głównego zbiornika. Opisany obieg wody pozwala na zachowanie ustalonych warunków zasilania stanowisk w wodę w trakcie badań.
6.2. Badania przepływu wody na terenie zabudowanym w laboratorium ...

Podstawę wykonanego stanowiska badawczego stanowi zbiornik o szerokości 3,5 m, do którego woda doprowadzona jest rurociągiem stalowym DN250, zakończonym zasuwą z ręczną regulacją otwarcia. Zbiornik podzielono ścianką na część imitującą zbiornik retencyjny oraz część zalewową. Odprowadzenie wody z modelu znajduje się w części położonej poza obszarem zalewowym, na dnie zbiornika, skąd woda odpływa grawitacyjnie do kanału powrotnego. Część zalewową w postaci płaskiej, poziomej płyty wypadowej, wykonano z wodoodpornych płyt sklejkowych, pokrytych nieprzepuszczalną i nierozmywalną powłoką, które następnie umieszczono na specjalnym stelażu z profil stalowych. W płycie wykonano otwory, w których zamontowano czujniki pomiarowe oraz makiety budynków. Teren zalewowy umieszczono na podporach, aby zapewnić swobodny odpływ wody z poziomej płyty (rys. 6.7). Szczegóły konstrukcyjne stanowiska pomiarowego przedstawiono na rysunku 6.8.

Zbiornik retencyjny stanowi większość części stanowiska badawczego i ma długość ok. 3 m. W dnie zbiornika wykonany jest otwór odprowadzający nadmiar wody poza stanowisko. W otworze montowana jest rura z tworzywa sztucznego DN75, zapewniająca – na zasadzie przelewu ruroowego – utrzymanie zwierciadła wody na określonym poziomie. Jeżeli poziom wody przewyższa rzędą krawędzi rury, jej nadmiar odprowadzany jest przez otwór w dnie zbiornika, aż do momentu ustalenia się zadanego poziomu w zbiorniku. Ten prosty układ zapewnia powtarzalność warunków początkowych, panujących w zbiorniku retencyjnym.

W ścianie odgradzającej zbiornik od terenu zalewowego wykonano prostokątny otwór, imitujący wyrwę w wale bądź zaporę, zamykany stalową zasuwą (rys. 6.9). Ruch zasuwy wymusza pneumatyczny silownik zamontowany na stelażu ponad przegrodą. Takie rozwiązanie umożliwia nagłe i całkowite otwarcie zasuwy w krótkim czasie (ok. 0,1 s), a także zapewnia powtarzalność wykonywanych eksperymentów.

Rys. 6.8. Schemat stanowiska pomiarowego (wymiary w cm)
6.2. Badania przepływu wody na terenie zabudowanym w laboratorium ...

Rys. 6.9. Szafka ze sterownikiem z podłączonymi sondami i komputer do rejestracji wyników pomiarów oraz zasuwa od strony zbiornika retencyjnego

Rys. 6.10. Sondy pomiarowe SG–25.Smart oraz ich montaż pod płytą wypadową

Sondy mają kształt hermetycznie zamkniętego cygara, które zawiera w sobie głowicę pomiarową z dwiema membranami: krzemową i separującą, oraz płytkę z układem elektromagnetycznym. Pomiar położenia zwierciadła wody za pomocą tych sond wykorzystuje zależność między wysokością słupe wody a wywołanym przez warstwę wody ciśnieniem hydrostatycznym. Pomiar ciśnienia wykonywany jest na wysokości membrany separującej zanurzonej sondy i odniesiony do ciśnienia atmosferycznego. Kompensacja ciśnienia atmosferycznego odbywa się przez kapilarną umieszczoną w kablu sondy. Membrana separująca wraz z głowicą pomiarową wykonana jest ze stali kwasoodpornej. Sygnał z głowicy pomiarowej zamieniany jest na postać cyfrową i wprowadzany do mikroprocesora, sterującego procesem obróbki sygnału pomiarowego, gdzie m.in. koryguje błędy temperaturowe. Po obróbce sygnał zmieniany jest na analogowy sygnał przesyłowy 4+20 mA oraz sygnał komunikacji.
cyfrowej w systemie HART. Dzięki temu możliwa jest zmiana nastaw parametrów metrologicznych, tj. jednostek ciśnienia, w jakich konfigurowany jest zakres pomiarowy, koniec i początek zakresu nastawianego oraz stałej czasowej. Sondy mają możliwość „zerowania” oraz kalibracji w odniesieniu do ciśnienia wzorcowego. Parametry metrologiczne sondy SG–25.Gamiento są następujące:
- błąd podstawowy $\pm 0,1\%$ dla zakresu podstawowego, $\pm 0,3\%$ dla minimalnej szerokości zakresu,
- stabilność długoczasowa $0,1\%(FSO)$ na 2 lata, błąd od zmian $U_{\text{za}} 0,002\%(FSO)/\text{IV}$,
- błąd temperaturowy $\pm 0,08\%(FSO)/10°C$, $\pm 0,2\%$ w całym zakresie temperatur kompensacji.

Sondy pomiarowe zamontowano w płycie, w specjalnie przygotowanych otworach (rys. 6.10). Punkty montażu zostały tak wybrane, aby zapewnić pomiar dla różnych sposobów rozmieszczenia zabudowy na terenie zalewowym. Dodatkowy pomiar głębokości wykonywany był w zbiorniku retencyjnym. Służył on do określania krzywej opróżniania zbiornika. Ze względu na mniej gwałtowne zmiany położenia zwierciadła wody niż w przypadku płyty wypadowej, pomiar ten realizowany był za pomocą sondy ultradźwiękowej. Zastosowano kompaktowy przetwornik poziomu Sondar SLM600. Przetwornik ten działa na zasadzie pomiaru czasu powrotu echa od wysłanego w kierunku medium impulsu ultradźwiękowego z pełną kompensacją temperatury. Jego wskaźniki metrologiczne są następujące: dokładność – $0,25\%$ mierzonego zakresu lub $3\ mm$, rozdzielczość – $0,03\%$ pełnego zakresu lub $1\ mm$, zakres pomiarowy – od $0,35\ m$ do $6,0\ m$.

Podczas realizacji eksperymentów wykonywano pomiary łącznie w 10 punktach na terenie zalewowym (s sondy hydrostaticzne, punkty S1, S2, A1-A8) oraz dodatkowo w zbiorniku retencyjnym (sonda ultradźwiękowa, punkt Z1). Ich lokalizację przedstawiono na rysunku 6.11.

Rys. 6.11. Schemat stanowiska badawczego z rozmieszczeniem punktów pomiaru

Každa z sond pomiarowych ma wyjście prądowe pracujące w zakresie od 4 do 20 mA, które połączone z modułem sterownika (rys. 6.9). Oprogramowanie sterownika umożliwia przetwarzanie sygnałów prądowych z sond pomiarowych oraz zapewnia sterowanie silnikiem do otwierania zasuwy w ścianie zbiornika. Ze sterownikiem połączony jest komputer ze specjalistycznym oprogramowaniem do czytania i rejestracji z odpowiednią częstotliwością wyników pomiarów na twardym dysku.
6.2. Badania przepływu wody na terenie zabudowanym w laboratorium …

6.2.2. Przebieg eksperymentu

Przed wykonaniem serii pomiarów na dnie obszaru zalewu instaluje się makiety budynków w postaci bloczków o boku 0,1 m w ustalonej do badania konfiguracji. Przykładowy układ zabudowy pokazano na rysunku 6.12. Przed serią eksperymentów wykonywano tarowanie sond (rys. 6.12) w celu ustalenia wspólnego zera i wyeliminowania błędów systematycznych. Tarowanie polegało na zalewaniu czujników sond hydrostatycznych znanych wartościami wysokości słupa wody w rurce, wykonaniu odczytów z przyrządów i sporządzaniu aktualnych charakterystyk urządzeń przez aproksymację punktów pomiarowych metodą najmniejszych kwadratów. Taką procedurę powtarzano po każdej zmianie konfiguracji zabudowy na stanowisku badawczym.

Rys. 6.12. Przykładowa konfiguracja zabudowy na stanowisku pomiarowym oraz tarowanie czujnika hydrostatycznego

Każdy z eksperymentów dla danej konfiguracji zabudowy i scenariusza przepływu powtarzano trzykrotnie. Przy działającym układzie zasilania stanowiska wodę, napełniało zbiornik retencyjny przez otwarcie zasuwy na rurociągu doprowadzającym. Poziom wody w zbiorniku ustawiano na przelewie rurowym, przez dobór rury o odpowiedniej długości. Z chwilą osiągnięcia założonej głębokości (przelew rurowy zaczyna pracować) zamykano dopływ wody do modelu i czekano do momentu, gdy przelew przestanie pracować. Po około pięciu minutach (ustalenie się warunków hydrostatycznych w zbiorniku) stanowisko było gotowe do wykonania eksperymentu. Przed uruchomieniem silnika włączano rejestrację sygnałów sczytywanych z sond przez program komunikujący się ze sterownikiem. Częstotliwość próbkowania (rejestracji wyników) ustawiona była na 10 Hz (10 pomiarów w ciągu 1 s). Eksperyment rozpoczynał się z chwilą włączenia przez sterownik silnika pneumatycznego, otwierającego zasuwę. Na skutek gwałtownego uwalnienia wody ze zbiornika retencyjnego, następował wypływ wody przez wyrwę na obszar zalewu, a fala wezbraniowa (spłuczenia) przemieszczała się po płaskiej płycie wokół i między makietaami budynków. Po przejściu fali przez obszar zabudowany, woda swobodnie spływała z płyty i następnie odprowadzana była kanałem zbiorczym do głównego zbiornika w laboratorium.

6.2.3. Analiza błędów i niepewności pomiarów

Pomiary w laboratorium wymagają matematycznego opracowania, analizy i oceny otrzymywanych wyników (Rumszycki, 1973). Z powodu niedokładności przyrządów
i metod pomiarowych oraz niekontrolowanej zmienności warunków otoczenia, wynik pomiaru jest zawsze różny od wartości rzeczywistej. Podając wynik pomiaru określonej wielkości, należy podać także informację o jego dokładności. Podstawowym pojęciem charakteryzującym dokładność wyniku pomiaru jest błąd pomiaru. Jest on definowany jako różnica pomiędzy wynikiem pomiaru a rzeczywistą wartością. Niestety, błędowi pojedynczego pomiaru nie można określić ze względu na brak znajomości wielkości rzeczywistej oraz brak znajomości wszystkich oddziaływań zewnętrznych wpływających na wynik pomiaru.

Błędy systematyczne powstają wskutek systematycznych oddziaływań czynników zewnętrznych. W kolejnych pomiarach błąd systematyczny ma wartość stałą, którą można korygować przez odpowiednie skalowanie przyrządów, np. w procesie tarowania. Przy zmianie warunków błąd ten zmienia się z określoną prawdopodobieństwem, którą można zazwyczaj określić analitycznie.

Błędy przypadkowe spowodowane są oddziaływaniami przypadkowymi i nie mogą być skompensowane przez poprawkę, ale mogą być pomniejszone przez wielokrotna powtarzanie pomiarów (n) i przyjęcie jako wyniku, średniej arytmetycznej serii wyników x:

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i .
\] (6.1)

Taką wartość można przyjmować jako poprawny wynik pomiaru. Natomiast wyniki pomiarów, ze względu na ich rozrzut wokół wartości prawdziwej, możemy traktować jako „niepewne”. Ilościową miarą niedokładności, której odzwierciedleniem jest wspomniany rozrzut wyników, jest niepewność pomiaru (Arendarski, 2003). Zjawiska wpływające na niepewność nazywane są źródłami niepewności. Należą do nich m.in.: niepewna znajomość wpływu warunków środowiskowych na pomiar, skończona rozdzielczość przyrządu, upraszczające przybliżenia stosowane w metodach pomiarowych itp. Na rozrzut wartości podczas pomiarów bezpośrednich w identycznych warunkach mogą składać się wszystkie wymienione wcześniej czynniki. W takim przypadku, do określenia niepewności stosuje się metodę polegającą na obliczeniu niepewności standardowej. W celu jej wyznaczenia należy oszacować wariancję eksperymentalną \(s^2(x)\) wartości \(x\) wyrażoną wzorem:

\[
s^2(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 .
\] (6.2)

Dodatni pierwiastek wariancji \(s^2(x)\) nazywany jest odchyleнием standardowym eksperymentalnym. Wariancję eksperymentalną średnią oblicza się następująco:

\[
s^2(\bar{x}) = \frac{s^2(x)}{n} .
\] (6.3)

Pierwiastek kwadratowy wariancji eksperymentalnej średnią nazywany jest odchyleniem standardowym eksperymentalnym średnią. Niepewność standardowa \(u(\bar{x})\) związana z wartością średnią \(\bar{x}\) jest odchyleniem standardowym eksperymentalnym średnią:

\[
u(\bar{x}) = s(\bar{x}) .
\] (6.4)
6.2. Badania przepływu wody na terenie zabudowanym w laboratorium ...

Rys. 6.13. Wyniki pomiarów głębokości w punktach kontrolnych
Należy pamiętać przy tym o istotnej różnicy pomiędzy błędem pomiaru a niepewnością pomiaru. Błąd jest zmienną losową, a niepewność jest parametrem rozkładu prawdopodobieństwa wystąpienia tego błędu i jest wyrażona liczbowo. Niepewność pomiaru bezpośrednio związana jest z powtarzalnością. Im powtarzalność pomiarów jest większa, tym niepewność jest mniejsza.

Do oceny otrzymanych rezultatów jako kryterium ilościowe określające dokładność i powtarzalność pomiaru przyjęto dwa parametry: błąd średni pomiaru oraz niepewność pomiaru, przy czym niepewność określana dla danego punktu pomiarowego, a następnie dla wszystkich punktów pomiarowych wyznaczano wartość średniej. Parametry te określono dla każdej z zastosowanych sond. Przykładowe wyniki otrzymane na podstawie pomiarów z poszczególnych sond dla trzech serii pomiarowych (rys. 6.13), wykonanych w trakcie wstępnych badań przepływu bez zabudowań, przedstawiono w tablicy 6.1.

Stosunkowo małe wartości niepewności i średniego błędu bezwzględnego, mieszczącego się w granicach błędu podawanego przez producenta sond (0,003 m), a także dobra powtarzalność pomiarów pozwalają wysunąć wniosek, że wyniki badań eksperymentalnych można wykorzystać jako materiał do weryfikacji obliczeń numerycznych.

6.2.4. Zakres badań

W trakcie prowadzenia badań laboratoryjnych wykonano pomiary głębokości dla kilkunastu wariantów geometrii obszaru przepływu poniżej wyrwy. Dla każdej konfiguracji zabudowy odtwarzano dwa scenariusze przepływu, wymuszone dwoma różnymi poziomami wody w zbiorniku retencyjnym powyżej wyrwy. Początkowe napelnienie zbiornika dobierano tak, aby nie dopuścić do przelania się wody nad makietami budynków w trakcie przepływu po otwarciu zasuw w wyrwie. Każdy scenariusz przepływu w danej konfiguracji zabudowy był odtwarzany trzykrotnie, a ostateczne wyniki pomiarów głębokości w danym punkcie wyznaczono, uśredniając trzy serie pomiarowe.

Tablica 6.2

<table>
<thead>
<tr>
<th>Nr</th>
<th>Symbol</th>
<th>Nazwa</th>
<th>Konfiguracja</th>
<th>Scenariusz</th>
<th>Widok</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E01</td>
<td>bez zabudowy</td>
<td></td>
<td>E01a H = 0,21 m</td>
<td>![Widok] E01b H = 0,31 m</td>
</tr>
</tbody>
</table>
6.2. Badania przepływu wody na terenie zabudowanym w laboratorium ...

<table>
<thead>
<tr>
<th>Nr</th>
<th>Oznaczenie</th>
<th>Opis</th>
<th>Pomiar (H) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>E02</td>
<td>pojedynczy budynek – prostopadli</td>
<td>E02a (H = 0.21) m (H = 0.31) m</td>
</tr>
<tr>
<td>3</td>
<td>E03</td>
<td>pojedynczy budynek – ukośnie</td>
<td>E03a (H = 0.21) m (H = 0.31) m</td>
</tr>
<tr>
<td>4</td>
<td>E04</td>
<td>grupa budynków – szeregowo</td>
<td>E04a (H = 0.21) m (H = 0.16) m</td>
</tr>
<tr>
<td>5</td>
<td>E05</td>
<td>grupa budynków – szachownica</td>
<td>E05a (H = 0.21) m (H = 0.16) m</td>
</tr>
<tr>
<td>6</td>
<td>E06</td>
<td>grupa budynków – ukośnie, wersja 1</td>
<td>E06a (H = 0.21) m (H = 0.16) m</td>
</tr>
<tr>
<td>7</td>
<td>E07</td>
<td>grupa budynków – ukośnie, wersja 2</td>
<td>E07a (H = 0.21) m (H = 0.16) m</td>
</tr>
<tr>
<td>8</td>
<td>E08</td>
<td>jednostronne rozszerzenie – bez zabudowy</td>
<td>E08a (H = 0.21) m (H = 0.16) m</td>
</tr>
<tr>
<td>9</td>
<td>E09</td>
<td>jednostronne rozszerzenie – z zabudową</td>
<td>E09a (H = 0.21) m (H = 0.16) m</td>
</tr>
</tbody>
</table>
Do stworzenia bazy danych pomiarów potrzebnych do weryfikacji obliczeń numerycznych, wybrano dziewięć układów geometrycznych zabudowy obszaru przepływu. Zestawienie konfiguracji zabudowy wraz ze scenariuszami przepływu zawiera tablica 6.2.

6.2.5. Eksperyment E01 – przepływ przez obszar bez zabudowy

W celu przeprowadzenia symulacji numerycznych przepływu powierzchniowego przez model obszaru zabudowanego, przeprowadzono identyfikację współczynnika szorstkości obszaru zalewu. Proces ten polegał na wykonaniu szeregu symulacji przepływu bez zabudowy, przy różnych wartościach współczynnika Manninga n charakteryzującego obszar zalewu. Wyniki obliczeń zmian głębokości w punktach kontrolnych porównywano wizualnie z wykonanymi tam pomiarami.

W celu przeprowadzenia obliczeń obszar przepływu pokryto siatką złożoną z 7430 trójkątnych komórek obliczeniowych (rys. 6.14). Długość boków trójkątnych komórek obliczeniowych zawierała się w przedziale od 0,05 m do 0,15 m.

Warunki graniczne zadano zgodnie z przeprowadzonym eksperymentem. Jako warunki początkowe założono stan hydrostatyczny w całym obszarze obliczeniowym, przy czym w zbiorniku zwierciadło wody wznosiło się 0,21 m nad poziomem obszaru zalewu. Powierzchnia obszaru zalewu była natomiast tylko lekko zwilżona, co uwzględniono w modelu, przyjmując początkowe pokrycie tej części obszaru przepływu cienką warstwą wody o grubości 0,0001 m. Warunki brzegowe zadawano odpowiednio do rodzaju brzegu: na brzegu zamkniętym zbiornika zakładano swobodny przepływ, natomiast na otwartym brzegu obszaru zalewu swobodny odpływ poza obszar przepływu.

Obliczenia powtarzano przy różnych wartościach współczynnika Manninga z krokiem czasowym Δt = 0,01 s, kończąc symulacje po 20 sekundach trwania procesu. Wyniki zmierzonych i obliczonych zmian głębokości w czterech punktach kontrolnych przedstawiono na rysunku 6.15. Można zauważyć, że praktycznie – bez względu na lokalizację – obliczone i zmierzone głębokości są zgodne z wynikami pomiarów. Największą zgodność obliczonych i zmierzonych głębokości uzyskano dla współczynnika szorstkości n = 0,018 m⁻¹/₃ s. Tak określoną wartość zweryfikowano, wykonując podobny eksperyment, w którym zmieniono
Badania przepływu wody na terenie zabudowanym w laboratorium …

początkowe napełnienie w zbiorniku na 0,31 m ponad poziom obszaru zalewu (eksperyment E01b). Badania potwierdziły poprawność wyznaczonej wartości współczynnika (rys. 6.16). We wszystkich następnych symulacjach numerycznych przyjmowano wyznaczoną wartość współczynnika szorstkości n jako stałą w czasie i przestrzeni.

Rys. 6.15. Eksperyment E01a – obliczone i zmierzone głębokości w wybranych punktach

Rys. 6.16. Eksperyment E01b – obliczone i zmierzone głębokości w wybranych punktach
6.3. Porównanie wyników obliczeń numerycznych z pomiarami

Przedstawione w poprzednim rozdziale pomiary głębokości na zabudowanym terenie zalewowym zostały wykorzystane do weryfikacji wyników obliczeń numerycznych wykonanych opracowanym modeliem. W pracy przedstawiono porównanie wyników obliczeń z pomiarami dla 8 konfiguracji zabudowy (eksperymenty E02–E09), po dwa scenariusze przepływu w każdym eksperymentie. Pierwsze dwie symulacje dotyczą opływu pojedynczego budynku, ustawionego prostopadle i ukośnie w stosunku do osi wywry. Kolejne cztery zadania dotyczą modelowania przepływu przez obszar o regularnej zabudowie, w różnych konfiguracjach (eksperymenty E04–E07). Przedmiotem ostatnich dwóch symulacji jest wypływ gwałtownej fali wezwraniojowej o charakterze jednowymiarowym na obszar, w którym fala nabiera cech dwuwymiarowych (eksperymenty E08 i E09). Układ taki mógłby odwzorowywać sytuację przepływu wody obustronnie zabudowaną ulicą i wypływ na miejski plac lub wydzielony kwartał zabudowy.

Wszystkie, opisane w tym rozdziale, laboratoryjne i numeryczne badania warunków przepływu przez obszar zabudowany przeprowadzono, przyjmując standardowe warunki wyjściowe. Eksperymenty wykonywano w dwóch wariantach, napełniając zbiornik retencyjny do różnych poziomów początkowych. Pierwszy wariant (a) wszystkich eksperymentów odpowiadał napelnieniu 0,21 m powyżej poziomu terenu zalewowego. W drugim wariancie (b) eksperymentów E02 i E03 początkowy poziom wody w zbiorniku wynosił 0,31 m, zaś w pozostałych doświadczeniach (E04–E09) 0,16 m. Powierzchnia zalewu przed rozpoczęciem eksperymentów była zawsze zwilżona. Wysokość stopadłościomian imituujących zabudowę dobrano tak, aby w trakcie przepływu woda nie przelewała się nad nimi. W obliczeniach, warunki graniczne zadawano zgodnie z analizowanym eksperymentem. Jako warunek początkowy wymuszono stan hydrostatyczny, przy czym poziom wody w zbiorniku odpowiadał początkowi napelnieniu, zaś na powierzchni zalewu przyjmowano pokrycie cienką warstwą wody o grubości 0,0001 m. Warunki brzegowe zadawano stosownie do rodzaju brzegu: na brzegu zamkniętym zbiornika zakładano swobody pośród, natomiast na otwartym brzegu obszaru zalewu swobodny odpływ poza obszar przepływu. Zabudowę traktowano jako obiekt o brzegach zamkniętych, wyłączając je z obszaru przepływu. Obliczenia prowadzono zawsze z krokiem czasowym \(\Delta t = 0,01 \) s, kończąc symulacje po 50 (eksperymenty E02 i E03) lub 20 (eksperymenty E04–E09) sekundach trwania procesu.

Analizując zmiany głębokości w czasie, w wybranym punkcie kontrolnym, można rozpatrzyć dwa n-elementowe ciągi – ciąg obserwacji \(x_i \) i ciąg wyników obliczeń \(c_i \). W tym celu, w pierwszej kolejności należy określić wartości średnich z pomiarów i obliczeń, które można zdefiniować następująco:

\[
x = \frac{1}{n} \sum_{i=1}^{n} x_i ,
\]

(6.5)
6.3. Porównanie wyników obliczeń numerycznych z pomiarami ...

\[\bar{c} = \frac{1}{n} \sum_{i=1}^{n} c_i . \] (6.6)

Do oceny zgodności prognoz hydrologicznych często stosowane są następujące miary statystyczne (Maidment, 1993):

- błąd systematyczny \(bs \) (ang. \(bias \))
 \[bs = \frac{1}{n} \sum_{i=1}^{n} (c_i - x_i) = \bar{c} - \bar{x} . \] (6.7)

- średni błąd bezwzględny \(sbb \)
 \[sbb = \frac{1}{n} \sum_{i=1}^{n} |c_i - x_i| . \] (6.8)

- średni błąd kwadratowy \(skb \)
 \[skb = \left(\frac{1}{n} \sum_{i=1}^{n} (x_i - c_i)^2 \right)^{1/2} . \] (6.9)

- wariancja \(var \)
 \[var = \frac{1}{n-1} \sum_{i=1}^{n} (c_i - x_i)^2 . \] (6.10)

- współczynnik korelacji \(wk \)
 \[wk = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(c_i - \bar{c})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (c_i - \bar{c})^2}} . \] (6.11)

W tablicach od 6.3 do 6.5 przedstawiono podstawowe miary statystyczne zgodności obliczeń i pomiarów dla trzech przykładowych eksperymentów. Dodatkowo zamieszczono w nich wartości maksymalnego błędu bezwzględnego, rozumianego jako największa chwila bezwzględna różnica między wynikiem obliczeń a pomiarem. Do porównania wybrano następujące eksperymenty: E01a – w którym odtwarzano przepływy na obszarze bez zabudowań, oraz E04a i E05a, dotyczące propagacji fal wezbraniowej przez obszar o różnych konfiguracjach zabudowy.
W eksperyencie E01a (tabl. 6.3) wartości większości błędów są rzędu dokładności sond (0,003 m), a współczynnik korelacji we wszystkich punktach jest nie mniejszy niż 0,95. Stąd można uznać zgodność obliczeń i pomiarów w tym eksperyencie za dobry. Wyniki te potwierdzają prawidłowe odtwarzanie przez model szybkozmiennego przepływu na obszarze niezabudowanym. W przypadku eksperymentów E04a i E05a jest inaczej. Przede wszystkim, w eksperyencie E04a (tabl. 6.4) można zauważyć, że w niektórych punktach obszaru przepływu (S1, A1, A6, A7, A8) błędy: systematyczne, średnie bezwzględne, średnie kwadratowe i szczególnie maksymalne bezwzględne są większe niż w pozostałych punktach. Błędy te są również większe niż w eksperyencji E01a. Świadczy to o zależności zgodności obliczeń z pomiarami od lokalizacji punktu kontrolnego. W przypadku punktów leżących w pewnych charakterystycznych miejscach przed i za zabudową lub między budynkami, tam gdzie przepływ ma złożoną strukturę i powstają lokalne zjawiska hydrauliczne, wyniki są gorsze niż w innych punktach obszaru. Jest to zrozumiałe ze względu na ograniczenia modelu matematycznego przyjętego do odwzorowania przepływu przez obszar zabudowany.

Rozbieżności błędów między eksperymentami E01a a E04a nie zawsze towarzyszy pogorszenie korelacji obliczeń i pomiarów (tabl. 6.3 i 6.4). Znaczny spadek wartości współczynnika korelacji wystąpił tylko w punktach S1 i A7, podczas gdy w pozostałych miejscach (A1, A6, A8) pozostała ona na takim samym, wysokim poziomie. Podobną cechę wartości mian można zauważyć, porównując zestawienia dla eksperymentu E04a i E05a (tabl. 6.4 i 6.5). Wartości błędów w punktach S2 i A6 w eksperyencie E04a są większe niż w E05a. Odporność jest w punkcie A2. Jednak zauważalna różnica wartości błędów między eksperymentami nie łączy się z istotną zmianą korelacji obliczeń z pomiarami. Oznacza to, że w wymienionych punktach, przy większych błędach systematycznych, wyniki obliczeń były zawyżone lub zaniżone w całym czasie symulacji.

W dalszych opisach wykonanych eksperymentów nie przytacza się ilościowej oceny zgodności wyników obliczeń z pomiarami. Głównym celem przedstawionych porównań była analiza przestrzennego rozkładu niedokładności obliczeń, zależnego od konfiguracji zabudowań i lokalizacji sond pomiarowych, przyczyn powstawania rozbieżności wyników symulacji i pomiarów oraz czasu ich występowania. W związku z tym uznano, że wystarczającym kryterium porównania obliczonej i zmierzonej głębokości wody będzie ocena wizualna. Znalazło to potwierdzenie w trakcie wykonywanych badań. Analizując wykresy zmian zmierzonej i obliczonej głębokości wody można było dostrzec zarówno chwilowe, jak i długoterminowe odrębności w sposób dostrzegany w trakcie analizy błędów dla trzech wybranych eksperymentów, wizualna ocena wyników potwierdziła większość wniosków wyciągniętych na podstawie miar statystycznych.

Tablica 6.3

<table>
<thead>
<tr>
<th>Sonda</th>
<th>S1</th>
<th>S2</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
</tr>
</thead>
<tbody>
<tr>
<td>bs [m]</td>
<td>-0,0017</td>
<td>-0,0003</td>
<td>-0,0009</td>
<td>0,0004</td>
<td>0,0007</td>
<td>-0,0009</td>
<td>0,0013</td>
<td>-0,0008</td>
<td>0,0009</td>
<td>0,0009</td>
</tr>
<tr>
<td>sbb [m]</td>
<td>0,0020</td>
<td>0,0009</td>
<td>0,0012</td>
<td>0,0009</td>
<td>0,0010</td>
<td>0,0016</td>
<td>0,0016</td>
<td>0,0014</td>
<td>0,0014</td>
<td>0,0012</td>
</tr>
<tr>
<td>mbb [m]</td>
<td>0,0086</td>
<td>0,0045</td>
<td>0,0093</td>
<td>0,0075</td>
<td>0,0055</td>
<td>0,0042</td>
<td>0,0060</td>
<td>0,0066</td>
<td>0,0049</td>
<td>0,0058</td>
</tr>
<tr>
<td>skb [m]</td>
<td>0,0025</td>
<td>0,0011</td>
<td>0,0018</td>
<td>0,0012</td>
<td>0,0013</td>
<td>0,0019</td>
<td>0,0019</td>
<td>0,0018</td>
<td>0,0018</td>
<td>0,0015</td>
</tr>
<tr>
<td>wk [-]</td>
<td>0,96</td>
<td>0,98</td>
<td>0,96</td>
<td>0,98</td>
<td>0,98</td>
<td>0,95</td>
<td>0,96</td>
<td>0,96</td>
<td>0,95</td>
<td>0,97</td>
</tr>
</tbody>
</table>
6.3. Porównanie wyników obliczeń numerycznych z pomiarami

Tablica 6.4

Zestawienie podstawowych miar statystycznych dla eksperymentu E04a

<table>
<thead>
<tr>
<th>Sonda</th>
<th>S1</th>
<th>S2</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
</tr>
</thead>
<tbody>
<tr>
<td>bs [m]</td>
<td>0.0020</td>
<td>0.0009</td>
<td>0.0012</td>
<td>0.0009</td>
<td>0.0010</td>
<td>0.0016</td>
<td>0.0014</td>
<td>0.0014</td>
<td>0.0012</td>
<td></td>
</tr>
<tr>
<td>sbb [m]</td>
<td>0.0086</td>
<td>0.0045</td>
<td>0.0093</td>
<td>0.0075</td>
<td>0.0055</td>
<td>0.0042</td>
<td>0.0060</td>
<td>0.0066</td>
<td>0.0049</td>
<td>0.0058</td>
</tr>
<tr>
<td>mbb [m]</td>
<td>0.0025</td>
<td>0.0111</td>
<td>0.0018</td>
<td>0.0012</td>
<td>0.0013</td>
<td>0.0019</td>
<td>0.0018</td>
<td>0.0018</td>
<td>0.0015</td>
<td></td>
</tr>
<tr>
<td>sbk [m]</td>
<td>0.96</td>
<td>0.98</td>
<td>0.96</td>
<td>0.98</td>
<td>0.98</td>
<td>0.95</td>
<td>0.96</td>
<td>0.96</td>
<td>0.95</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Tablica 6.5

Zestawienie podstawowych miar statystycznych dla eksperymentu E05a

<table>
<thead>
<tr>
<th>Sonda</th>
<th>S1</th>
<th>S2</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
</tr>
</thead>
<tbody>
<tr>
<td>bs [m]</td>
<td>0.0083</td>
<td>-0.0049</td>
<td>0.0085</td>
<td>0.0003</td>
<td>-0.0037</td>
<td>-0.0033</td>
<td>-0.0044</td>
<td>-0.0076</td>
<td>-0.0079</td>
<td>-0.0054</td>
</tr>
<tr>
<td>sbb [m]</td>
<td>0.0102</td>
<td>0.0049</td>
<td>0.0090</td>
<td>0.0017</td>
<td>0.0037</td>
<td>0.0034</td>
<td>0.0049</td>
<td>0.0077</td>
<td>0.0081</td>
<td>0.0060</td>
</tr>
<tr>
<td>mbb [m]</td>
<td>0.0401</td>
<td>0.0097</td>
<td>0.0354</td>
<td>0.0085</td>
<td>0.0057</td>
<td>0.0094</td>
<td>0.0090</td>
<td>0.0119</td>
<td>0.0161</td>
<td>0.0107</td>
</tr>
<tr>
<td>sbk [m]</td>
<td>0.0150</td>
<td>0.0057</td>
<td>0.0113</td>
<td>0.0085</td>
<td>0.0042</td>
<td>0.0041</td>
<td>0.0055</td>
<td>0.0082</td>
<td>0.0091</td>
<td>0.0067</td>
</tr>
<tr>
<td>wk [-]</td>
<td>0.79</td>
<td>0.91</td>
<td>0.96</td>
<td>0.99</td>
<td>0.99</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.79</td>
<td>0.95</td>
</tr>
</tbody>
</table>

6.3.1. Eksperyment E02 – opływ pojedynczego budynku ustawionego prostopadle do osi wyrwy w wale

W eksperyencie E02 zbadano przepływ wokół prostopadłościanu o wymiarach w planie 0,3×0,5 m, imitującego pojedynczy budynek, którego dłuższa ściana była prostopadła do osi wyrwy. Geometrię obszaru przepływu przedstawiono na rysunku 6.17. Budynek położony był asymetrycznie względem wspomnianej osi.

Obszar przepływu w obliczeniach zastąpiono siatką złożoną przez 8616 komórek (rys. 6.18). W celu zwiększenia dokładności obliczeń, w okolicach zabudowy siatka została lokalnie zagęszczona. Długość boków trójkątnych komórek obliczeniowych zawierała się w przedziale od 0,05 m do 0,15 m.

Laboratoryjne i numeryczne badania warunków przepływu przeprowadzono, przyjmując standardowe warunki wyjściowe, opisane na początku rozdziału 6.3. Wyniki pomiarów zmian głębokości w dziesięciu punktach kontrolnych przedstawiono w dalszej części tego rozdziału, zestawiając je z obliczeniami.
Chwilowe układy głębokości i prędkości dla dwóch wybranych momentów eksperymentu E02a pokazano na rysunkach 6.19 i 6.20. Szczegóły rozkładu parametrów przepływu wokół przeszkody dla chwili \(t = 5 \) s przedstawiono na rysunku 6.21.

Można też zauważyć, że przepływ wody w obszarze terenu zalewowego ma charakter szybkozmienny, któremu towarzyszy przejście z ruchu spokojnego w rwący i odwrotnie. Strefy ruchu spokojnego i rwącego można wyznaczyć, badając rozkład przestrzenny liczby Froude’a. Na rysunku 6.22 przedstawiono pola wartości tej liczby w dwóch wybranych chwilach. Na rysunkach kolorem zielonym oznaczono strefę ruchu spokojnego, która obejmuje także obszary praktycznie niepokryte wodą oraz te, w których woda jest nieruchoma. Jak widać, w wyrwie, przy wypływie wody ze zbiornika retencyjnego, następuje przejście z ruchu spokojnego w rwący. Po dotarciu czoła fali do przeszkody formuje się przed nią
odskok hydrauliczny, reprezentujący lokalne przejście do ruchu spokojnego. Woda, opływająca budynek, ponownie zaczyna płynąć ruchem rwałym, co wiąże się z gwałtownym przyspieszeniem i wzrostem depresji zwierciadła. Również w strefie cienia, za przeszkodą, obserwuje się ruch spokojny, który w tym regionie występuje lokalnie, tworząc widoczne cyrkulacje (rys. 6.21).

Rys. 6.19. Eksperyment E02a – rozkład głębokości na obszarze zalewu po czasie \(t = 2 \) s i \(t = 5 \)
Rys. 6.20. Eksperyment E02a – rozkład prędkości na obszarze zalewu po czasie $t = 2$ s i $t = 5$
6.3. Porównanie wyników obliczeń numerycznych z pomiarami …

Rys. 6.21. Eksperyment E02a – rozkład głębokości i prędkości w okolicy budynku po czasie \(t = 5 \text{ s} \)
Rys. 6.22. Eksperyment E02a – rozkład liczby Froude’a na obszarze zalewu po czasie $t = 2 \text{s}$ i $t = 5 \text{s}$
Rys. 6.23. Eksperyment E02a – obliczone i zmierzone głębokości w punktach kontrolnych
Rys. 6.24. Eksperyment E02b – obliczone i zmierzone głębokości w punktach kontrolnych
Przedstawione w formie graficznej wyniki numerycznej symulacji, chociaż nie są bezpośrednią veryfikacją obliczeń, to jednak pomagają rozpoznać zjawiska hydrauliczne zchodzące w trakcie przepływu. Szczególnie w przypadku wykorzystania modelu do identyfikacji zagrożeń, niesionych przez gwałtowną powódź w mieście, dają one dosść przejrzystą ocenę występujących głębokości i prędkości na terenie zalewowym. Dodatkowo, do wyznaczania map zagrożenia powodziowego, można wykorzystywać także przestrzenne rozkłady maksymalnych wartości głębokości i prędkości oraz minimalnych czasów docierania czoła fali powodziowej do poszczególnych miejsc leżących w obrębie terenu zalewu. Tego typu wyniki zostaną zaprezentowane w rozdziale dotyczącym zastosowań modelu do symulacji realnych zdarzeń powodziowych.

Dla eksperymentów E02a i E02b, zmierzone i obliczone głębokości w punktach kontrolnych przedstawiono odpowiednio na rysunkach 6.23 i 6.24. Analizując wykresy zmian głębokości, można uznać, że pomiary i obliczenia są zbędne w zadowalającym stopniu. Najlepszą zgodność uzyskano w punktach S1 i A1, które leżą poza zasięgiem oddziaływania przeszkody na przepływ (rys. 6.19), co potwierdza prawidłowe odtwarzanie w modelu zjawiska propagacji fali wezbraniowej na obszarze niezabudowanym. Punkty od A2 do A7 są zlokalizowane przed przeszkodą, w strefie odbicia fali od ściany budynku, czyli w miejscu formującego się i ewoluującego w czasie odkoku hydraulicznego (rys. 6.22). Obliczona w tym rejonie głębokość nieco odbiega od pomiarów, jednak można uznać, że zarówno maksymalne wartości głębokości, jak i zmienność w czasie są zgodne z obserwacjami. W obszarze tym ruch cechuje się złożonąukturę przestrzenną, niestacjonarnością lokalnych zjawisk hydraulicznych i nie opowiadającą klasycznym zalożeniom wolnozmienną. Stąd można uznać, że wyniki obliczeń uzyskanych modelem rzucu płaskiego są zadowalające. Dobrą zbieżność obliczeń z pomiarami można zaobserwować także w punktach S2 i A8, chociaż głębokości są tutaj dużo mniejsze, ze względu na umiejscowienie punktów w strefie cienia za przeszkodą.

6.3.2. Eksperyment E03 – opływ pojedynczego budynku ustawionego ukosnie do osi wyryw w wałe

W eksperymentie E03 przebadano przepływ wokół tego samego prostopadłościanu, co w poprzednim zadaniu. Dłuższa ściana imitacji pojedynczego budynku była tym razem ustawiona ukosnie do osi wyryw, pod kątem około 45°. Geometrię obszaru przepływu przedstawiono na rysunku 6.25.

Do obliczeń obszar przepływu załóżono siatką numeryczną złożoną z 8534 komórek (rys. 6.26). Analogicznie, jak w przypadku poprzednim, w celu zwiększenia dokładności obliczeń, w okolicach budynku siatka została zagęszczona. Długość boków trójkątnych komórek obliczeniowych zawiera się w przedziale od 0,05 m do 0,15 m.

Laboratoryjne i numeryczne badania warunków przepływu przeprowadzono, przyjmując standardowe warunki wyjściowe, opisane na początku rozdziału 6.3. Wyniki pomiarów zmian głębokości, w tych samych, co poprzednio, punktach kontrolnych, przedstawiono w dalszej części tego rozdziału, porównując je z obliczeniami.

Chwilowe układy głębokości i prędkości dla dwóch wybranych momentów eksperymentu E03a pokazano na rysunkach 6.27 i 6.28. Szczegóły rozkładu parametrów przepływu wokół przeszkody dla chwili \(t = 5 \) s zaprezentowano na rysunku 6.29.
6.3. Porównanie wyników obliczeń numerycznych z pomiarami ...

Rys. 6.27. Eksperyment E03a – rozkład głębokości na obszarze zalewu po czasie $t = 2\ s$ i $t = 5\ s$
Rys. 6.28. Eksperyment E03a – rozkład prędkości na obszarze zalewu po czasie $t = 2 \text{s}$ i $t = 5 \text{s}$
6.3. Porównanie wyników obliczeń numerycznych z pomiarami …

Rys. 6.29. Eksperyment E03a – rozkład głębokości i prędkości w okolicy budynku po czasie $t = 5$ s
6. Laboratoryne i numeryczne badania przepływu wody ...

Rys. 6.30. Eksperyment E03a – rozkład liczby Froude’a na obszarze zalewu po czasie \(t = 2 \) s i \(t = 5 \) s

Identycznie, jak w zadaniu poprzednim, przepływ wody na terenie zalewu ma charakter szybkozmieniący, któremu towarzyszą przejścia przez ruch krytyczny. Na rysunku 6.30
przedstawiono zmiany wartości liczby Froude’a w obszarze zalewu w dwóch opisywanych chwilach. Na rysunkach, w kolorze zielonym, oznaczono strefę ruchu spokojnego, a pozostałe kolory odpowiadają ruchowi rwaącemu. W trakcie wypływu woda ze zbiornika retencyjnego, w wyrwie następuje przejście z ruchu spokojnego w rwały. Po dotarciu czoła fali do przeszkody formuje się przed nią odkok hydrauliczny, reprezentujący lokalne przejście do ruchu spokojnego. Odkok ten, przyjmując postać dwóch spiętrzeń o charakterze rwaćnym, rozciga się aż do brzegów płyty wypadowej. W trakcie opływania budynku ruch wody przechodzi w rwały, co wiąże się z gwałtownym przyspieszeniem i depresją zwierciadła. W strefie cienia, za przeszkodą, można znowu obserwować ruch spokojny. Zmierzone i obliczone głębokości w punktach kontrolnych przedstawiono na rysunkach 6.31 i 6.32, odpowiednio dla eksperymentu E03a i E03b. Ogólne porównanie otrzymanych wyników potwierdza dobrą zgodność pomiarów i obliczeń.

Dla obu scenariuszy wypływu, ponownie najlepszą zgodność zmienną w czasie głębokości uzyskano w punktach S1 i A1, które leżą poza zasięgiem oddziaływania przeszkody na wypływ (rys. 6.27). Punkty od A2 do A7 leżą przed przeszkodą, w strefie wypływu tworzącego się i przemieszczającego pod prąd spiętrzenia w formie odkoku hydraulicznego. Na rysunku 6.30, prezentującym dwa momenty zmienniającego się w czasie rozkładu liczby Froude’a, można zauważyć jak wspomniany odkok – w postaci linii wyznaczającej granicę obszaru ruchu spokojnego, zbliża się do punktów kontrolnych, by później przekroczyć je pod prąd. Zjawisko to widoczne jest na wykresach zmian głębokości w postaci znacznego chwilowego przyrostu głębokości. Na rysunku 6.31 efekt ten można zaobserwować wyraźnie w punktach A3 i A6, gdzie przemieszczające się spiętrzenie zarejestrowano przyrządami, a także dość dobrze odwzorowano w obliczeniach. W punkcie A2 odtworzony w symulacji numerycznej odkok pojawia się jednak znacznie wcześniej niż to wynika z pomiarów. Tu moment przejścia spiętrzenia rozpoczyna się nieco przed 50 sekundą trwania wypływu, co świadczy o rozbieżności rzeczywistej i modelowanej prędkości przemieszczania się pod prąd frontu spiętrzenia. Jednocześnie można zauważyć, że podstawowe parametry hydrauliczne odkoku, do których należą między innymi głębokości sprzężone, są w modelu odwzorowane poprawnie. Niezgodność czasu pojawiania się spiętrzenia w punktach kontrolnych jest jeszcze bardziej widoczna w przypadku drugiego scenariusza wypływu – E03b, w którym ruch odbywa się z większą prędkością i przy większych liczbach Froude’a. Na rysunku 6.32 różnice wartości głębokości z pomiarów i obliczeń widoczne są praktycznie we wszystkich punktach, w których obserwuje się przejście odkoku (A2, A3, A4, A6, A7). Z poczynionych obserwacji wynika, że w strefie blickiej tworzącej się nieciągłości wypływu, gdzie następuje przejście z ruchu silnie rwającego do spokojnego, pominięcie złżonej struktury przestrzennej odkoku w modelu ruchu płaskiego może prowadzić do niedokładności obliczeń. Wydaje się również, że przyczyną niezgodności zmierniczych i obliczonych prędkości przemieszczania się strefy spiętrzenia może być przyjęcie stałego współczynnika szorstkości bez względu na rodzaj ruchu, co może być wątpliwie w warunkach ruchu szybkozmiennego. W niniejszej pracy nie wykonywano badania wpływu wartości wspomnianego współczynnika na uzyskiwane wyniki, zakładając, że nie jest on parametrem służącym do tarowania modelu, a jedynie stałą wielkością fizyczną, której wartość określono doświadczalnie w przypadku wypływu bez zabudowy (rozdz. 6.2.5).

W pozostałych punktach kontrolnych (S2, A8) ponownie uzyskano dość dobrą zbieżność obliczeń z pomiarami. Punkty te zlokalizowano w strefie cienia za budynkiem, gdzie głębokości są znacznie mniejsze niż w pozostałych miejscach i nie występują zjawiska lokalne związane z ruchem przejściowym.
Rys. 6.31. Eksperyment E03a – obliczone i zmierzone głębokości w punktach kontrolnych
Rys. 6.32. Eksperyment E03b – obliczone i zmierzone głębokości w punktach kontrolnych
6.3.3. Eksperyment E04 – przepływ przez obszar z budynkami w układzie szeregowym

W eksperymencie E04 zbadano przepływ przez schematyczny model zabudowy, w którym bloczki o wymiarach w planie 0,1 m × 0,1 m imitujące budynki, ustawione były w regularne szeregi, tworzące system prostopadłych względem siebie kanałów odwzorowujących układ ulic (rys. 6.33).

Do obliczeń obszar przepływu zastąpiono siatką złożoną z 11860 komórek (rys. 6.34). W celu zwiększenia dokładności obliczeń, w okolicach zabudowy siatka została lokalnie zagęszczona. Długość boków trójkątnych komórek obliczeniowych zawierała się w przedziale od 0,02 m między i wokół zabudowań do 0,15 m na brzegach obszaru przepływu.

Laboratoryjne i numeryczne badania warunków przepływu przeprowadzono, przyjmując standardowe warunki wyjściowe, opisane na początku rozdziału 6.3. Wyniki pomiarów zmian głębokości w punktach kontrolnych przedstawiono w dalszej części tego rozdziału, porównując je z obliczeniami.

Chwilowe układy głębokości i prędkości dla dwóch wybranych momentów eksperymentu E04a pokazano na rysunkach 6.35 i 6.36. Szczegóły rozkładu parametrów przepływu w obszarze zabudowanym dla chwili $t = 5$ s zaprezentowano na rysunku 6.37.

Przebieg zjawiska był następujący. Po uwolnieniu masy wody ze zbiornika fala dociera do pierwszego szeregu zabudowań po około 0,5 s. W wyniku zderzenia ze ścianami
budynków, w przekroju charakteryzującym się nagłą miejscową zmianą przekroju czynnego, następuje spiętrzenie wody. Wsutek słabującego zasilania (ciągłe opróżnianie zbiornika) przeważy się ono pod prąd w kierunku wyrwy, przybierając postać odkoku hydraulicznego. Spiętrzona przed obszarem zabudowanym woda wpływa częściowo pomiędzy budynki lub opływa ten obszar od zewnątrz. Dominującym kierunkiem przepływu wewnętrz obszaru zabudowanego jest kierunek równoległy do osi wyrwy, a przepływ nabiera tu cech ruchu jednowymiarowego w równoległych kanałach.

Przed budynkami – w poszczególnych rzdach zabudowy – od strony wyrwy tworzą się lokalne spiętrzenia, zaś za nimi depresje i cyrkulacje. Wsutek lokalnych zmian przekroju czynnych strumieni wzdluż głównego kierunku przepływu powstają regularne spiętrzenia i depresje zwierciadła o znacznym spadkach. Poniżej zabudowy fała wezbraniowa ponownie nabiera cech dwuwymiarowości.

Podobnie jak w przykładach dotyczących opływu pojedynczego budynku (rozdz. 6.3.1 i 6.3.2), przepływ wody na terenie zalewu ma charakter szybkozmienny. Na rysunku 6.38 przedstawiono rozkład wartości liczby Froude’a w dwóch wybranych momentach czasu. Na rysunkach w kolorze zielonym oznaczono strefę leżącego w potencjałkościkowych wzdłuż dołu czynnych strumieni wzdłuż ruchu spokojnego w rzecz. Po dotarczu czoła fali do pierwszego rzędu zabudowań woda wdziera się między budynki w warunkach wyrwy rzędu ruchowego. Naustinie, przed budynkami powstaje spiętrzenie wody, formując odkos hydrauliczny. Ostatecznie bezpośrednio przed, a także wewnątrz obszaru zabudowanego, woda płynie ruchem spokojnym, co jest skutkiem utraty energii mechanicznej strumienia w tym rejonie oraz zamiast energii kinetycznej w potencjałkościkowych. Strefa ruchu spokojnego rozciąga się również poza wspomniany obszar wzdluż głównego kierunku przepływu. Tylko lokalnie, w miejscach wypływu wody poza budynki, można obserwować przejście do ruchu ruchowego, związane ze znaczną depresją zwierciadła i przyspieszeniem przepływu. Ruch rzędu występuje także poniżej ostatniego szeregu zabudowań, przy rozszerzeniu przekroju czynnego, uprzednio ograniczonego budynkami, a co za tym idzie, z gwałtownym przyspieszeniem przepływu i spadkiem głębokości poniżej głębokości krytycznej.

Zmierzone i obliczone głębokości w punktach kontrolnych przedstawiono na rysunkach 6.39 i 6.40, odpowiednio dla eksperymentu E04a i E04b. Porównanie otrzymanych wyników potwierdza dobrą zgodność pomiarów i obliczeń.

Największe różnice zmierzonych i obliczonych zmian głębokości w czasie można zauważyć w przypadku eksperymentu E04a w punktach S1 i A1, leżących bezpośrednio przed pierwszym rzędem zabudowy. Jednocześnie rozbryzgowość ta nie wystąpiła w obliczeniach dla eksperymentu E04b, w którym odtwarzano przepływ wywoływany mniejszym napełnieniem początkowym w zbiorniku retencyjnym. Przyczyn niezgodności można doszukiwać się w tym wypadku w różnicy przebiegu obserwowanego i modelowanego zaobserwówe w przypadku odbicia się czoła fali wezbraniowej od budynków. Mianowicie, w trakcie eksperymentu E04a zaraz po uderzeniu czoła fali w budynki, można było zaobserwować rozbryzg wody, czyli odrywanie się pewnej części masy wody od objętości płynnej. Powodowało to chwilowe odciąganie hydrostatycznych czujników pomiaru ciśnienia, stąd prawdopodobnie pomierzona w punktach S1 i A1 głębokość była zaniżona. Z drugiej strony, zjawisko rozbryzgu nie jest uwzględnione w modelu przepływu płaskiego i nie może być tym samym odwzorowane w obliczeniach. Problem ten nie był jednak szczegółowo badany w trakcie prowadzonych prac, stąd nie musi być jedynym wyjaśnieniem wspomnianej rozbryzgowości. Uzyskane wyniki wskazują, że model przepływu z parametrami uśrednionymi w pionie, nie odtwarzając trójwymiarowej struktury zjawisk lokalnych, nie zapewnia pełnej
zgodności obliczeń z obserwacjami w rejonie bliskim wspomnianych zjawisk. Wydaje się jednak, że obserwowane rozbieżności nie są na tyle istotne, by znacząco deformowały symulacje rzeczywistych zdarzeń powodziowych. Odmienne niż przed obszarem zabudowy, w punktach zlokalizowanych wewnątrz rejonu budynków (od A2 do A6), jak i w miejscach wypływu wody poza budynki (A7, A8, S2) obliczone głębokości są, niemal wszędzie, nieco niższe od zmierzonych. Przyczyną tego jest prawdopodobnie zbyt mała wartość oporów przepływu ujęta w modelu. W zależności od modelu uwzględniono jedynie szorstkość powierzchni terenu, natomiast zaniedbano lokalne straty energii wywoływane przez zabudowę. W przyjętych równaniach nie występują ani człony reprezentujące straty w miejscach z zagłębieniami, ani z silami tarcia o ściany budynków.

Wydaje się, że uzupełnienie modelu o te elementy mogłoby poprawić dokładność obliczeń, ale wymaga to odrębnych, pogłębiających badań, mocno wykraczających poza przyjęty plan niniejszej pracy.

Rys. 6.35. Eksperyment E04a – rozkład głębokości na obszarze zalewu po czasie \(t = 1 \) s i \(t = 5 \) s
6.3. Porównanie wyników obliczeń numerycznych z pomiarami …
Rys. 6.37. Eksperyment E04a – rozkład głębokości i prędkości w rejonie zabudowy po czasie $t = 5$ s
6.3. Porównanie wyników obliczeń numerycznych z pomiarami...

Rys. 6.38. Eksperyment E04a – rozkład liczby Froude’a na obszarze zalewu po czasie \(t = 1 \, s \) i \(t = 5 \, s \)
Rys. 6.39. Eksperyment E04a – obliczone i zmierzone głębokości w punktach kontrolnych
Rys. 6.40. Eksperyment E04b – obliczone i zmierzone głębokości w punktach kontrolnych
6. Laboratoryne i numeryczne badania przepływu wody …

6.3.4. Eksperyment E05 – przepływ przez obszar z budynkami w układzie w szachownicę

W eksperyencie E05 zbadano przepływ przez schematyczny model zabudowy, w którym bloczki o wymiarach w planie 0,1 m × 0,1 m imitujące budynki ustawione były w regularne szeregi, przesunięte względem siebie, tworząc układ podobny do szachownicy (rys. 6.41).

Na potrzeby obliczeń obszar przepływu pokryto siatką złożoną z 11474 komórek (rys. 6.42). W celu zwiększenia dokładności obliczeń, w okolicy budynków siatka została lokalnie zagęszczona. Długość boków trójkątnych komórek obliczeniowych zawierała się w przedziale od 0,02 m wokół i między zabudowaniami do 0,15 m na brzegach obszaru przepływu.

Laboratoryjne i numeryczne badania warunków przepływu przeprowadzono, przyjmując standardowe warunki wyjściowe, opisane na początku rozdziału 6.3. Wyniki pomiarów zmian głębokości, w tych samych, co poprzednio, punktach kontrolnych, przedstawiono w dalszej części tego rozdziału, porównując je z obliczeniami.
Chwilowe układy głębokości i prędkości dla dwóch wybranych momentów eksperymentu E05a pokazano na rysunkach 6.43 i 6.44. Szczegóły rozkładu parametrów przepływu w obszarze zabudowanym dla chwili \(t = 5 \, \text{s} \) zaprezentowano na rysunku 6.45.

Przebieg zjawiska był w początkowej fazie podobny do eksperymentu opisanego poprzednio. Po uwalnieniu masy wody ze zbiornika fala dociera do pierwszego szeregu zabudowań po około 0,5 s. W wyniku zderzenia ze ścianami budynków, w przekroju charakterystycznym się nagłą miejscową zmianą prędkości czynnego następuje spiętrzenie wody. Następnie, wskutek zmniejszającego się zasilania ze zbiornika, spiętrzenie przesuwa się pod prąd w kierunku wydwierzy, przybierając postać odsoku hydraulicznego. Spiętrzona przed obszarem zabudowanym woda wpływa częściowo pomiędzy budynki lub opływa obszar zabudowany od zewnątrz.

Podobnie jak w przykładzie poprzednim (rozdz. 6.3.3), przepływ wody na terenie zalewu ma charakter szybkozmienny. Na rysunku 6.46 przedstawiono rozkład wartości liczby Froude’a w obszarze zalewu w dwóch wybranych momentach czasu. Na rysunkach w koło-zalewu oznaczono strefę ruchu spokojnego, a pozostałe kolory odpowiadają ruchowi rzwacznemu. W wyrwie, jak zwykle, następuje przejście z ruchu spokojnego do wąskiego.

Zmierzone i obliczone głębokości w punktach kontrolnych przedstawiono na rysunkach 6.47 i 6.48, odpowiednio dla eksperymentu E05a i E05b. Ogólnie dobra zgodność pomiarów i obliczeń potwierdza prawidłowość odtworzenia hydrodynamiki przepływu, chociaż na wykracach można zauważyć także pewne rozbieżności. Analogicznie do eksperymentu E04a, największa niezgodność zmierzonych i obliczonych głębokości w przypadku eksperymentu E05a występuje w punktach S1 i A1, leżących bezpośrednio przed zabudowaniami. Także tutaj, przeszacowanie wyników jest mniej widoczne w obliczeniach dla eksperymentu E05a, w którym odtwarzano przepływ wywołany mniejszym napędem początkowym w zbiorniku retencyjnym. Prawdopodobnie źródła niedokładnego odtworzenia historii głębokości w tym miejscu naświetlono w poprzednim podrzędzie.

W przypadku niektórych punktów zlokalizowanych wewnątrz obszaru zabudowanego (od A2 do A6), tak samo jak w eksperymentach poprzednich, obliczone głębokości są znanło. Jednocześnie, obliczenia wykonane dla scenariusza przepływu E05b są nieco dokładniejsze (rys. 6.47 i 6.48 – punkty A2, A3 i A5), co wskazuje, że przy mniejszych prędkościach przepływu uzyskuje się lepszą zgodność obserwacji z symulacją numeryczną.
Potwierdza to wcześniejszy wniosek o niepełnej reprezentacji zjawiska oporu przepływu w przyjętym modelu matematycznym. Zwiększenie oporów ruchu wywołałoby zmniejszenie prędkości przepływu z jednoczesnym podniesieniem rzędnej zwierciadła wody.

Rys. 6.43. Eksperyment E05a – rozkład głębokości na obszarze zalewu po czasie \(t = 1 \text{ s} \) i \(t = 5 \text{ s} \)
6.3. Porównanie wyników obliczeń numerycznych z pomiarami …

Rys. 6.44. Eksperyment E05a – rozkład prędkości na obszarze zalewu po czasie $t = 1\, s$ i $t = 5\, s$
Rys. 6.45. Eksperyment E05a – rozkład głębokości i prędkości w rejonie zabudowy po czasie $t = 5$ s
6.3. Porównanie wyników obliczeń numerycznych z pomiarami …

Rys. 6.46. Eksperyment E05a – rozkład liczby Froude’a na obszarze zalewu po czasie $t = 1\, s$ i $t = 5\, s$
Rys. 6.47. Eksperyment E05a – obliczone i zmierzone głębokości w punktach kontrolnych
6.3. Porównanie wyników obliczeń numerycznych z pomiarami …

Rys. 6.48. Eksperymen E05b – obliczone i zmierzone głębokości w punktach kontrolnych
6.3.5. Eksperyment E06 – przepływ przez obszar z budynkami ustawionymi ukośnie do osi wyrwy w wale (wersja 1)

W eksperymencie E06 przebadano przepływ przez schematyczny model zabudowy, w którym bloczki o wymiarach w planie 0,1 m × 0,1 m, imitujące budynki, ustawione były w regularne szeregi, przesunięte względem siebie i nachylone w osi wyrwy pod kątem około 30° (rys. 6.49).

Na potrzeby obliczeń obszar przepływu pokryto siatką złożoną z 11 447 komórek obliczeniowych (rys. 6.50). W celu zwiększenia dokładności obliczeń, w okolicy budynków, siatka została lokalnie zagęszczona. Długość boków trójkątnych komórek obliczeniowych zawierała się w przedziale od 0,02 m wokół i między zabudowaniami do 0,15 m na brzegach obszaru przepływu.

Laboratoryjne i numeryczne badania warunków przepływu przeprowadzono, przyjmując standardowe warunki wyjściowe, opisane na początku rozdziału 6.3. Wyniki pomiarów zmian głębokości, w tych samych, co poprzednio, punktach kontrolnych, przedstawiono w dalszej części tego rozdziału, porównując je z obliczeniami.
6.3. Porównanie wyników obliczeń numerycznych z pomiarami ...

Chwilowe układy głębokości i prędkości dla dwóch wybranych momentów eksperymentu E06a pokazano na rysunkach 6.51 i 6.52. Szczegóły rozkładu parametrów przepływu w obszarze zabudowanym dla chwili t = 5 s zaprezentowano na rysunku 6.53.

W przypadku eksperymentu E06 przebieg zjawiska był nieco inny od scenariuszy opisanych wcześniej. Tym razem, uwolniona ze zbiornika woda dociera do pierwszego budynku po około 0,4 s. Po zetknięciu się z zabudowaniami, podobnie jak poprzednio, następuje spłaszczenie wody, ale wskutek ukośnego ustawienia poszczególnych szeregów zabudowań względem głównego kierunku przepływu następuje rozdzielenie fali na narożniku pierwszego budynku. Jednocześnie, odmienne w stosunku do eksperymentów E04 i E05, spiętrzenie nie przesuwa się w kierunku wyrwy, lecz w postaci dwóch ukośnych odsoków hydraulicznych rozciągą się do granic obszaru przepływu. Układ ten wygląda podobnie jak w eksperyencjnie E03, dotyczącym ukośnie ustawionego pojedynczego budynku. Spiętrzenie na obszarze zabudowanym woda wpływa częściowo pomiędzy budynki lub opływa obszar zabudowany od zewnątrz, przyspieszając wzdłuż czołowych szeregów zabudowań. Przyspieszeniem towarzyszy widoczna depresja zwierciadła. Zgodnie z oczekiwaniami za obszarem zabudowanym wytworza się strefa cienia.

Podobnie jak w poprzednich eksperymentach, przepływ wody na terenie zalewu ma charakter szybkozmienny, o czym świadczy przedstawiony na rysunku 6.54 rozkład wartości liczby Froude’a w dwóch analizowanych w przykładzie momentach czasu. Na rysunkach, kolorem zielonym oznaczono strefę ruchu spokojnego, a pozostałe kolory odpowiadają ruchowi rwałemu. W wyrwie, jak zwykle, następuje przejście z ruchu spokojnego w rwał. Po dotarciu czoła fali do pierwszego rzędu zabudowań, woda wdziera się między budynki w warunkach ruchu rwałego.

Ukośne ustawienie budynków względem głównego kierunku propagacji fali wezbrańowej powoduje, że początkowo spłaszczenia o charakterze ruchu spokojnego powstają tylko lokalnie, w okolicy narożników budynków w pierwszych szeregach zabudowy od strony dopływu.

Zmierzone i obliczone głębokości w punktach kontrolnych przedstawiono na rysunkach 6.55 i 6.56, odpowiednio dla eksperymentu E06a i E06b. Ponownie uzyskano dość dobrą zgodność pomiarów i obliczeń. Na wykresach można zauważyć pewne powtarzające się rozbieżności, które wystąpiły także w przypadku poprzednich konfiguracji zabudowy. Podobnie jak we wcześniejszych eksperymentach, w niektórych punktach złożonych
wewnątrz obszaru zabudowanego (np. A1, A4, A5) można zauważyć niedoszacowanie obliczonych głębokości. To powtarzające się – w każdym z analizowanych układów zabudowy – zaniżenie wyników obliczeń potwierdza wniosek o niepełnej reprezentacji oporów ruchu w przyjętym matematycznym modelu przepływu.

Rys. 6.51. Eksperyment E06a – rozkład głębokości na obszarze zalewu po czasie $t = 1\ s$ i $t = 5\ s$
6.3. Porównanie wyników obliczeń numerycznych z pomiarami …

Rys. 6.52. Eksperyment E06a – rozkład prędkości na obszarze zalewu po czasie \(t = 1 \) s i \(t = 5 \) s
Rys. 6.53. Eksperyment E06a – rozkład głębokości i prędkości w rejonie zabudowy po czasie \(t = 5 \text{ s} \)
6.3. Porównanie wyników obliczeń numerycznych z pomiarami ...

Rys. 6.54. Eksperyment E06a – rozkład liczby Froude’a na obszarze zalewu po czasie $t = 1$ s i $t = 5$ s
Rys. 6.55. Eksperyment E06a – obliczone i zmierzone głębokości w punktach kontrolnych
6.3. Porównanie wyników obliczeń numerycznych z pomiarami …

Rys. 6.56. Eksperyment E06b – obliczone i zmierzone głębokości w punktach kontrolnych
6.3.6. Eksperyment E07 – przepływ przez obszar z budynkami ustawionymi ukośnie do osi wyrwy w wale (wersja 2)

W eksperymencie E07 zbadano przepływ przez schematyczny model zabudowy, w którym bloczki o wymiarach w planie 0,1 m x 0,1 m, imitujące budynki, ustawione były w regularne szeregi, przesunięte względem siebie i nachylone w osi wyrwy pod kątem około 150° (rys. 6.57).

Na potrzeby obliczeń obszar przepływu pokryto siatką złożoną z 11510 komórek obliczeniowych (rys. 6.58). W celu zwiększenia dokładności obliczeń, w okolicy budynków, siatka została lokalnie zagęszczona. Długość boków trójkątnych komórek obliczeniowych zawierała się w przedziale od 0,02 m wokół i między zabudowaniami do 0,15 m na brzegach obszaru przepływu.

Rys. 6.57. Eksperyment E07 – widok ogólny i schemat obszaru zalewu z lokalizacją punktów pomiaru

Rys. 6.58. Eksperyment E07 – siatka numeryczna
Laboratoryjne i numeryczne badania warunków przepływu przeprowadzono, przyjmująca standardowe warunki wyjątkowe, opisane na początku rozdziału 6.3. Wyniki pomiarów zmian głębokości, w tych samych, co poprzednio, punktach kontrolnych, przedstawiono w dalszej części tego rozdziału, porównując je z obliczeniami.

Chwilevé układy głębokości i prędkości dla dwóch wybranych momentów eksperymentu E07a pokazano na rysunkach 6.69 i 6.70. Szczegółowy sekwencja parametrów przepływu w obszarze zabudowanym dla chwili \(t = 5 \) s zaprezentowano na rysunku 6.61.

Przebieg eksperymentu E07 był ogólnie podobny do scenariusza poprzedniego – E06. Identycznie jak wcześniej, uwolniona ze zbiornika woda dociera do pierwszego budynku po około 0,4 s. Po zetknięciu się z pierwszymi zabudowaniami, wskutek ukośnego ustawienia szeregów zabudowań, następuje rozdzielenie fali na dwie części opływające obszar zabudowany od zewnątrz. Powstające przed terenem zabudowanym śpiętrzenie nie przesuwa się w kierunku wyrwy, lecz w postaci dwóch ukośnych odkuków hydraulicznych rozcięga się do granic obszaru przepływu. Kształt śpiętrzenia jest bardzo zbliżony do zaobserwowanego w poprzednim eksperymentie. Śpiętrzona przed obszarem zabudowanym woda wpływa częściowo pomiędzy budynki lub opływa obszar zbudowany od zewnątrz, przyspieszając wzdłuż czołowych szeregów zabudowań. Przyspieszeniami towarzyszy widoczna depresja zwierciadła. Za obszarem zabudowanym wyciąga się strefa cienia.

Jest widoczne, że kierunek przepływu wody wewnątrz obszaru zabudowanego wynika z ułożenia budynków względem siebie i w związku z tym są inne niż w eksperyencie E06. Odmienna konfiguracja kanałów powoduje nieco mniejsze niż poprzednio napełnienia na obszarze zabudowanym. Przed budynkami, od strony wyrwy, tworzą się lokalne śpiętrzenia, zaś za nimi depresje i cirkulacje. Pole prędkości jest zgodne z konfiguracją zabudowy. Podstawowym kierunkiem przepływu jest kierunek wyznaczony przez prostoliniowe kanały. Jednocześnie w początkowych odcinkach tory ruchu przecinają poszczególne równoległe kanały, powodując przepływ wody między nimi.

Podobnie jak w eksperyencie E06, przepływ wody na terenie zalewu ma charakter szybkozmienny. Na rysunku 6.62 przedstawiono rozkład wartości liczby Froude’a w dwóch rozważanych w przykładowie momentach czasu. Na rysunkach, w kolorze zielonym, oznaczono strefę ruchu spokojnego, a pozostałe colory odpowiadają ruchowi rwałcowi. W wydrwie następuje przejście z ruchu spokojnego w wąską. Po dotarciu czoła fali do pierwszego rzędu zabudowań, woda wdzięza się między budynki w warunkach ruchu wąskiego. Ustawienie budynków powoduje, że śpiętrzenia o charakterze ruchu spokojnego powstają lokalnie, przed budynkami, w pierwszych szeregach zabudowy od strony dopływu.

Zmierzone i obliczone głębokości w punktach kontrolnych przedstawiono na rysunkach 6.63 i 6.64, odpowiednio dla eksperymentu E07a i E07b. Ponownie uzyskano dość dobrą zgodność pomiarów i obliczeń. Tak samo, jak we wcześniejszych eksperymentach, w punktach zlokalizowanych wewnątrz obszaru zabudowanego zwykle obserwuje się nieobsadzenie obliczonych wielkości głębokości. Jak wspomniano wcześniej, zaniżenie wyników obliczeń wynika prawdopodobnie z uproszczonego opisu oporów ruchu w przyjętym modelu przepływu.
Rys. 6.59. Eksperyment E07a – rozkład głębokości na obszarze zalewu po czasie $t = 1 \text{s}$ i $t = 5 \text{s}$
6.3. Porównanie wyników obliczeń numerycznych z pomiarami …

Rys. 6.60. Eksperyment E07a – rozkład prędkości na obszarze zalewu po czasie $t = 1\,s$ i $t = 5\,s$
Rys. 6.61. Eksperyment E07a – rozkład głębokości i prędkości w rejonie zabudowy po czasie \(t = 5 \text{ s} \)
6.3. Porównanie wyników obliczeń numerycznych z pomiarami …

Rys. 6.62. Eksperyment E07a – rozkład liczby Froude’a na obszarze zalewu po czasie $t = 1$ s i $t = 5$ s
Rys. 6.63. Eksperyment E07a – obliczone i zmierzone głębokości w punktach kontrolnych
6.3. Porównanie wyników obliczeń numerycznych z pomiarami …

Rys. 6.64. Eksperyment E07b – obliczone i zmierzone głębokości w punktach kontrolnych
6.3.7. Eksperymenty E08 i E09 – przepływ przez jednostronnie rozszerzony obszar zalewu

Dwa ostatnie z wykonanych eksperymentów poświęcono analizie przepływu przez obszar zalewowy, który charakteryzował się nagłym, jednostronnym rozszerzeniem przekroju. Geometrię obszaru przepływu przedstawiono na rysunku 6.65. Poniżej wyrwy zainstalowano ścianki, wykonane z wodoodpornej sklejki, które wyznaczały granice rozpatrywanego obszaru. Bezpośrednio poniżej wyrwy rozpoczynał się kanał o szerokości 0,1 m i długości 1,1 m. Następnie kanał rozszerzał się do szerokości 0,9 m. Długość szerszego odcinka wynosiła 1,6 m. W eksperymentach odtworzono przebieg zalewu w przypadku terenu bez zabudowy (eksperyment E08) i obszaru zabudowanego (eksperyment E09). W drugim z eksperymentów bryły o wymiarach w planie 0,1 m × 0,1 m, imitujące budynki, ustawione były w regularne szeregi, tworząc układ prostopadłych, prostoliniowych kanałów.

Rys. 6.65. Eksperymenty E08 i E09 – widok ogólny i schemat fragmentu obszaru zalewu z lokalizacją punktów pomiaru

Obszar przepływu pokryto siatką złożoną z 11767 i 10793 komórek obliczeniowych (rys. 6.66), odpowiadając dla eksperymentu E08 i E09. Na całym obszarze zalewu przyjęto stałą długość boków trójkątnych komórek obliczeniowych równą 0,02 m.

Laboratoryjne i numeryczne badania warunków przepływu przeprowadzono przyjmując, w obu eksperymentach, standardowe warunki wyjściowe, opisane na początku rozdziału 6.3. Wyniki pomiarów zmian głębokości w przyjętych punktach kontrolnych przedstawiono w dalszej części tego rozdziału, porównując je z obliczeniami i zestawiając eksperymenty.
6.3. Porównanie wyników obliczeń numerycznych z pomiarami …

Rys. 6.66. Eksperymenty E08 i E09 – fragmenty siatek numerycznych

Chwilowe układy głębokości i prędkości dla dwóch wybranych momentów eksperymentów E08a i E09a pokazano odpowiednio na rysunkach 6.67 i 6.68 oraz 6.69 i 6.70. Przebieg eksperymentu E08 był następujący. Uwolniona ze zbiornika woda w pierwszym momencie płynie wzdłuż prostoliniowego kanału, by po czasie około 0,2 s wypłynąć w postaci dwuwymiarowej fali wezbraniowej na szerzej część obszaru zalewu. Następnie czoło fali przemieszcza się w kierunku brzegów obszaru przepływu. Po niecałych 2 sekundach dociera ono do brzegu otwartego, przez który następuje odpływ poza stanowisko pomiarowe. Nieco później, fala dopływająca do zamkniętego brzegu bocznego odbija się tam, formując ukośny odskok hydrauliczny. W takiej formie przepływ trwa do końca eksperymen-

Rys. 6.67. Eksperyment E08a – rozkład głębokości na obszarze zalewu po czasie $t = 1$ s i $t = 5$ s
Podobnie jak we wszystkich wcześniejszych doświadczeniach, zarówno w eksperymentach E08, jak i E09 przepływ wody ma charakter szybkozmienny. Na rysunkach 6.71 i 6.72 przedstawiono rozkład wartości liczby Froude’a w dwóch analizowanych w przykładzie momentach czasu, odpowiednio dla każdego z eksperymentów.

Na rysunkach, kolorem zielonym oznaczono strefę ruchu spokojnego, a pozostałe kolory odpowiadają ruchowi rwaącemu. W eksperymentie E08, wypływ wody z wąskiego kanału na rozszerzony obszar zalewu następuje w warunkach ruchu rwającego. Ten rodzaj ruchu charakteryzuje propagację fali wezbraniowej aż do momentu zderzenia czoła fali ze ścianą ograniczającą obszar przepływu. W tym miejscu następuje odbicie fali, powodujące
powstanie ukośnego odkoku hydraulicznego, a co za tym idzie, zmianę ruchu płynącego w spokojny. Strefa ruchu spokojnego rozciąga się także w okolicach narożnika ograniczonego prostopadłymi ścianami. W tym rejonie występują prędkości zwrotne, cyrkulacje, a także strefy martwe.

W eksperymencie E09, w miejscu wypływu wody na rozszerzony obszar występuje lokalna depresja zwierciadła, a przepływ jest płynny. W takich warunkach woda płynie wzdłuż osi głównego kierunku przepływu i wdziera się między budynki. W tej pierwszej fazie przepływu, spiętrzenia o charakterze ruchu spokojnego powstają lokalnie przed budynkami od strony dopływu. W trakcie trwania zjawiska woda wypełnia ograniczony zbiornik obszar zabudowany i płynie tam ruchem spokojnym. Tylko miejscowo można
zaobserwować przejścia do ruchu rwącego w rejonach dopływu i odpływu wody przez granice obszaru zabudowanego. W miejscach tych występują nagle przyspieszenia i depresje zwierciadła.

Zmierzone i obliczone głębokości w punktach kontrolnych przedstawiono na rysunkach 6.73 i 6.74, zestawiając na nich wyniki z eksperymentów E08 i E09, odpowiednio dla dwóch scenariuszy przepływu. Bardzo dobrą zgodność pomiarów i obliczeń uzyskano w eksperyencji E08, czyli dla sytuacji, gdy obszar zalewu był pozbawiony zabudowy. Prawdziwe odzwierciedlenie prędkości propagacji czoła fali wezwabniowej oraz wartości obliczonych głębokości potwierdza skuteczność modelu przepływu wody płytkiej w symulacji przepływu powodziowego na terenach naturalnych, niezabudowanych. Na wykresach można zauważyć jednak rozbieżności obserwacji i obliczeń w przypadku przepływu przez obszar zabudowany. Podstawowe różnice, to rozbieżność czasów wystąpienia nagłych przyrostów głębokości w punktach S1, S2 i A8 oraz odtworzenie w obliczeniach dla punktu A1.
przyrostu głębokości niezauważanego przez przyrząd pomiarowy. Pierwsze z wymienionych punktów leżą w miejscach, w których tworzą się spiętrzenia przy narożnikach domów, a kierunek przepływu zmienia się o 90°. Mimo niewielkiego przesunięcia w czasie spiętrzeń, prawidłowo odwzorowane są ich rzeczywiste głębokości. Punkt A1 leży w rejonie bardzo złożonego przepływu, pomiędzy cyrkulacją obserwowaną między dwoma sąsiednimi zabudowaniami, spiętrzeniem występującym przy budynkach oraz przepływem zwrotnym wzdłuż ścianki prostopadłej do głównego kierunku przepływu.

Rys. 6.71. Eksperyment E08a – rozkład liczby Froude’a na obszarze zalewu po czasie \(t = 1 \) s i \(t = 5 \) s
6.3. Porównanie wyników obliczeń numerycznych z pomiarami …

Z obliczeń wynika, że punkt A1 znalazł się pod wpływem spiętrzenia powstałego po odbiciu wody od ścianek zabudowy, podczas gdy w trakcie eksperymentu laboratoryjnego w tym rejonie rozciągał się obszar cyrkulacji obserwowanej poniżej wylotu z wąskiego kanału.
Rys. 6.73. Eksperymenty E08a i E09a – obliczone i zmierzone głębokości w punktach kontrolnych
6.3. Porównanie wyników obliczeń numerycznych z pomiarami ...

Rys. 6.74. Eksperyment E08b i E09b – obliczone i zmierzone głębokości w punktach kontrolnych
6.4. Wpływ sposobu reprezentacji obszaru zabudowanego na wyniki obliczeń

W modelowaniu powierzchniowych przepływów powodziowych przez obszary zabudowane stosuje się kilka podstawowych metod reprezentacji zabudowań, co opisano w rozdziale 4.2. O ile jest to możliwe, grupy zabudowań, bądź wręcz pojedyncze budynki, wykluczają się z obszaru przepływu, traktując ich ściany jako nieprzepuszczalne, co powoduje, że woda nie może wpływać do takich budynków i być tam retencjonowana. Takie podejście wykorzystano we wszystkich opisanych do tej pory symulacjach. Inną metodą odwzorowania budynków jest pozostawienie ich obszarów w modelu terenu wraz z jednoczesnym podniesieniem rzędnych dna wewnętrz obrysów domów do poziomu równego wysokości zabudowy. W przypadku gdy przepływ nie powoduje przelewu się wody nad budynkami, można uznać, że podejście takie jest równoznaczne z poprzednią metodą. Wynika to z założenia, że całe dno jest nieprzepuszczalne i nierozmywalne, co w praktyce oznacza, że teren położony powyżej rzędnej zwierciadła wody jest od przepływu odseparowany.

Innym sposobem reprezentacji obszaru zabudowanego, dość często stosowanym w symulacjach numerycznych powodzi miejskich, jest jego wyodrębnienie i przypisanie mu znaczenie większego niż fizyczny współczynnika szorstkości terenu. Takie podejście sprawia, że wewnętrz obszarów zabudowy nie są już oddzielone od przepływu, a zmiany w strukturze ruchu są wynikiem modyfikacji oporów przepływu w rejonie budynków, a nie geometrią obszaru. Metoda ta jest szczególnie chętnie stosowana wtedy, gdy obszary zabudowane stanowią tylko niewielką część całego obszaru przepływu, a charakterystyczne wymiary domów i ulic są znacznie mniejsze od wymiarów komórek siatki numerycznej. Wyniki uzyskiwane zgodnie z opisanym sposobem charakteryzują się zwykle dobrą jakością, a najczęściej stosowana do opisu szorstkości terenu zabudowanego wartość współczynnika Manninga waha się w granicach od 0,1 do 0,15 m⁻¹³s, w zależności od gęstości zabudowy.

W niniejszej pracy skupiono się na zbadaniu możliwości wykorzystania wspomnianej metody w symulacjach szybkozmiennego przepływu powodziowego w bezpośrednim sąsiedztwie i wewnątrz złożonego geometrycznie obszaru zabudowanego. W celu dokonania oceny jakości wyników, powtórzono symulacje numeryczne przepływów odpowiadających eksperymentom E04a i E06a, stosując metodę modyfikacji współczynnika szorstkości wewnętrz budynków. Wewnątrz wszystkich budynków przyjmowano stały współczynnik Manninga r w granicach od 0,2 do 1,0 m⁻¹³s, podczas gdy na pozostałym terenie wartość tego współczynnika była taka, jak oszacowano w symulacjach wstępnych, czyli 0,018 m⁻¹³s. Pozostałe dane i parametry obliczeniowe pozostawiano, jak we wcześniejszych obliczeniach. Dołączenie budynków do obszaru obliczeniowego wymagało jedynie zmodyfikowania siatki numerycznych, ale ich gęstość pozostawano bez zmian. Ostatecznie na rysunkach 6.75 i 6.77 zestawiono wyniki tych obliczeń z pomiarami i obliczeniami wcześniejszymi, wykonanymi metodą eliminacji zabudowań z obszaru przepływu.

W przypadku eksperymentu E04a, który szczegółowo opisano w rozdziale 6.3.3, dobrych odwzorowań pomiarów i pierwszych obliczeń głębokości uzyskano w większości punktów kontrolnych (prócz punktów S1 i A1), dla których w przyjętym zakresie wartości współczynnika Manninga. Punkty S1 i A1 są zlokalizowane przed pierwszym rzędem zabudowy. W tym miejscu, po uderzeniu i obiciu się czoła fali wezbraniowej, powstaje nagłe spiętrzenie, które zazwyczaj powstaje w trakcie eksperymentu, jak i odtworzone w obliczeniach wykonanych metodą wyłączania zabudowy z obszaru przepływu. W wyniku zastosowania metody modyfikacji współczynnika szorstkości udało się uzyskać ten sam efekt, ale czas wystąpienia i maksymalna głębokość spiętrzenia istotnie zależały od warto-
ści współczynnika Manninga, co jest wyraźnie widoczne na rysunku 6.75. Najlepszą zgodność obliczeń z pomiarami i wcześniejszymi obliczeniami w dwóch analizowanych punktach S1 i A1 uzyskano dla największej z przyjętych wartości współczynnika, to jest \(n = 1 \text{ m}^{1/3} \). Dalsze zwiększanie jego wartości asymptotycznie zbliżało wyniki do obliczeń uzyskanych z wyłączeniem zabudowy, a przekroczenie wartości \(n = 3 \text{ m}^{1/3} \) spowodowało załamanie procesu obliczeniowego.

Wyniki obliczeń głębokości dla eksperymentu E06a, opisanego szczegółowo w rozdziale 6.3.5, wraz z zestawieniem pomiarów i z pierwszymi obliczeniami, przedstawiono na rysunku 6.77. Podobnie jak poprzednio, uzyskano dość dobrą zgodność wyników z pomiarami i wcześniejszymi obliczeniami. Inaczej przedstawia się jednak zależność jakości obliczeń od przyjętej – wewnątrz budynków – wartości współczynnika szorstkości. Jest to szczególnie widoczne w obliczeniach głębokości w punktach S1 i A1, złożonych na skraju obszaru zabudowanego.

W punktach tych najlepszą zgodność z pomiarami i wcześniejszymi obliczeniami uzyskano dla współczynnika Manninga \(n = 0.5 \text{ m}^{1/3} \). Przyjęcie w obliczeniach wartości mniejszej, bądź większej, powodowało odpowiednio niedoszacowanie lub przeszacowanie wyników. Ten sam skutek, chociaż mniej wyraźny, można zaobserwować także w pozostałych punktach. W przypadku rozpatrywanego eksperymentu, gdy poszczególne zabudowania są przesunięte względem siebie i ustawione w ukosne – względem osi wyrwy – szeregi, przyjęcie większej od \(0.5 \text{ m}^{1/3} \) wartości współczynnika szorstkości wewnątrz budynków spowodowało także istotną modyfikację prędkości przemieszczania się czoła fali spiętnienia w obszarze zabudowanym. Objawia się to zmianą momentu dotarcia czoła fali do poszczególnych punktów. Efekt ten można zauważyć wyraźnie na rysunku 6.77 w punktach A6 i A8.

Na rysunku 6.78 przedstawiono obliczony rozkład głębokości i rozkład prędkości po czasie 5 sekund od rozpoczęcia symulacji. Rozkłady te można porównać z wynikami pierwszych obliczeń przedstawionych na rysunku 6.53. Jak widać, podstawowe cechy rozkładu głębokości, uzyskane w obu symulacjach, są do siebie podobne. W tych samych miejscach, wewnątrz obszaru zabudowanego, jak i na jego granicy, zostały odtworzone w podobny sposób strefy spiętnień i depresji zwierciadła wody. Wyraźną różnicę w układzie pola głębokości można zaobserwować w strefie cienia za obszarem zabudowanym, która w przypadku obliczeń ze zmodyfikowanym współczynnikiem Manninga została
szybciej pokryta warstwą wody, przepływającą przez zabudowę. Istotne różnice można także zaobserwować w obliczonych polach prędkości. W przypadku obliczeń z zabudową wyeliminowaną z pola przepływu, widać wyraźne ukierunkowanie przepływu wzdłuż ostatniego kanału, najbardziej oddalonego od dopływu. W obliczeniach ze zmienionym współczynnikiem szorstkości efekt ten został zakłócony przez widoczne „przebicia” strumieni między równoległymi kanałami. W obu symulacjach również podobnie zostały odtworzone pola prędkości w rejonach opływu obszaru zabudowanego od zewnątrz.

Rys. 6.75. Eksperyment E04a – obliczone i zmierzone głębokości w punktach kontrolnych
6.4. Wpływ sposobu reprezentacji obszaru zabudowanego na wyniki obliczeń

Rys. 6.76. Eksperyment E04a – rokład głębokości i prędkości w rejonie zabudowy po czasie \(t = 5 \) s
Rys. 6.77. Eksperyment E06a – obliczone i zmierzone głębokości w punktach kontrolnych
6.4. Wpływ sposobu reprezentacji obszaru zabudowanego na wyniki obliczeń

Rys. 6.78. Eksperyment E06a – rozkład głębokości i prędkości w rejonie zabudowy po czasie \(t = 5 \) s
Podsumowując można stwierdzić, że w przypadku obu metod reprezentacji zabudowy w obliczeniach, układy głębokości i prędkości są jakościowo zgodne. Należy jednak pamiętać o możliwych różnicach w bilansie masy i pędu, wynikających z uwzględnienia bądź wyeliminowania powierzchni zabudowań z obszaru przepływu, które niekiedy mogą powodować znaczne ilościowe różnice wyników. Pamiętając też o zależności oporów ruchu od prędkości przepływu woda można przypuszczać, że zgodność obliczeń z rzeczywistym przebiegiem zjawiska będzie mniejsza w przypadku przepływów wolniejszych niż omawiane w pracy przepływy powodziowe.

Na podstawie uzyskanych wyników obliczeń można wnioskować, że metoda zastępowania zabudowy obszarami o podwyższonym współczynniku szorstkości nadaje się do modelowania szybkozmiennego przepływu powodziowego w obszarze zabudowanym. W tym celu poszczególne budynki, lub ich zwarte zespoły, można zastępować obszarami o współczynniku szorstkości rzędu $n = 0,5 \ m^{-1/3} \ s$. Jest to wartość większa niż sugerowana do obliczeń hydraulicznych na terenach częściowo pokrytych zabudową, w których zabudowa traktowana jest wyłącznie jako efekt podsiatkowy. Jednak metodę tę należy stosować bardzo ostrzeżenie, pamiętając, że jakość wyników zależy od parametrów przepływu. Wybór odpowiedniej wartości współczynnika n, niezbędnej do poprawnego odwzorowania przepływu między budynkami, wymaga indywidualnej analizy konkretnego scenariusza przepływu. W skrajnych przypadkach, przy bardzo małych prędkościach przepływu, ta prosta i łatwa do zastosowania metoda uwzględnienia zabudowy może okazać się nieskuteczna i prowadzić do całkowicie błędnych wyników obliczeń.
Rozdział 7

NUMERYCZNA SYMULACJA POWODZI NA ZABUDOWANYM TERENIE ZALEWOWYM OBWAŁOWANEJ RZEKI

W tym rozdziale pracy opisano dwa przykładowe zastosowania opracowanego i zwerfikowanego modelu hydrodynamiki szybkozmieniowych przepływów powodziowych na terenach miejskich. Wykonane symulacje ewolucji zalewu obszaru zabudowanego dotyczyły lokalnych powodzi spowodowanych nagłym przerwaniem obwałowania rzeki. W pierwszej symulacji odtworzono przepływ powodziowy na fikcyjnym, stosunkowo niewielkim, obwałowanym terenie zabudowanym. W obliczeniach tych do reprezentacji zabudowy wykorzystano metodę wyłączania poszczególnych budynków z obszaru przepływu. Uwzględnienie każdego budynku było możliwe ze względu na zблиżone wymiary charakterystyczne całego obszaru przepływu i obszaru zabudowanego. Drugi przykład dotyczył symulacji potencjalnej powodzi wywołanej przerwaniem wału na istniejącym, zabudowanym terenie w dolinie Wisły w rejonej Saskiej Kępy w Warszawie. Wobec bardzo dużej liczby zabudowań pokrywających fragmenty obszaru przepływu, do reprezentacji obszarów zabudowanych zastosowano metodę modyfikacji współczynnika szorstkości terenu. W tym wypadku tereny zabudowane zastąpiono zwartymi obszarami o podwyższonej do $n = 0,1 \text{ m}^{-1/3} \text{s}$ wartości współczynnika Manninga.

7.1. Zalew fikcyjnego terenu zabudowanego

W celu zaprezentowania możliwości wykorzystania opracowanego modelu hydrodynamiki przepływów powodziowych do prognozowania zalewu obszaru zabudowanego, w pierwszej kolejności wykonano symulację przepływu wody po przerwaniu obwałowania rzeki, na małym, hipotetycznym terenie zabudowanym. Dane topograficzne obszaru zalewu i opis geometrii budynków otrzymano z Instytutu Inżynierii i Gospodarki Wodnej Politechniki Krakowskiej.

Obszar przepływu pokazano na rysunku 7.1. Jest to obszar zalewowy o wymiarach 515 na 340 m, przyлегający do południowej strony (dolna krawędź rysunku 7.1) do obwałowanej rzeki. Sama rzeka nie została ujęta w modelu terenu, co oznacza, że w symulacji numerycznej nie odtworzono przepływu w korycie rzeki. W obliczeniach przyjęto, że w obwałowaniu ($x = 300 \text{ m}$) pojawiła się wyrwa o długości 50 m. Przerwanie zlokalizowało się w miejscu starego koryta rzeki, odciętego przez wał przeciwpowodziowy. W takich miejscach wały są często osłabione i szczególnie narażone na awarie. Sam proces powstania i kształtowania się wyrwy w czasie nie był analizowany. Założono nagle i całkowite zniszczenie wału na przyjętym odcinku, powodujące natychmiastowe (w chwili początkowej) obniżenie rzędnej terenu do poziomu posadowienia. W trakcie symulacji założono w wyrwie niezmienny poziom zwierciadła wody, przyjmując tam rzędną o 3 m przeważającą poziom krawędzi wyrwy. Obliczenia wykonano, przyjmując na całym obszarze przepływu stałą wartość współczynnika Manninga $n = 0,033 \text{ m}^{-1/3} \text{s}$.
Rys. 7.1. Geometria obszaru przepływu wraz z rzeźbą terenu i obrysami budynków

Rys. 7.2. Siatka numeryczna rozpatrywanego obszaru

Aby przeprowadzić symulację przepływu, wykonano w programie Surfer 8 firmy Golden Software cyfrowy model rzeźby terenu o rozdzielczości $\Delta x = \Delta y = 0,5 \text{ m}$ (rys. 7.1). Następnie cały obszar potencjalnego zalewu pokryto siatką złożoną z 17327 trójkątnych elementów (rys. 7.2). Siatka została lokalnie zagęszczona w obszarze między budynkami,
aby zapewnić lepsze odwzorowanie parametrów przepływu w tym regionie. Długości bo-
ków trójkątów siatki zmieniają się od 3 m w okolicach budynków do 6 m przy zewnętrz-
nych brzegach obszaru obliczeniowego. W trakcie obliczeń rzędna terenu wewnątrz każe-
do elementu siatki była interpolowana liniowo na podstawie danych z modelu terenu.
Obszar każdego z budynków znajdujących się na drodze przepływu został wyłączony
z obliczeń przez przyjęcie na ścianach budynków warunku brzegowego odpowiadającego
brzegowi zamkniętemu (nieprzepuszczalnemu). Na jednym otwartym brzegu obszaru,
reprezentującym wyrwę, przyjęto stałą rzeczną zwierciadla wody równą 200 m n.p.m., od-
powiadającą 3 m napelnienia w wyrwie. Jako warunek początkowy dla czasu \(t = 0 \) s zadano
brak przepływu i pokrycie powierzchni terenu minimalną warstwą wody na całym obszarze
obliczeniowym. Obliczenia przeprowadzono z krokiem czasowym \(\Delta t = 0,1 \) s, a całkowity
czas symulacji wynosił 300 s.

Na rysunkach od 7.3 do 7.5 przedstawiono zestaw wyników dla omówionego scenaa-
riusza przepływu. Taka graficzna postać wyników może być bezpośrednio wykorzystana do
wykonania map zagrożenia powodziowego na obszarach obwałowanych lub narażonych na
skutki awarii innej zabudowy hydrotechnicznej, jak choćby zapory zbiornikowe. Do nie-
żądnych informacji trzeba zaliczyć w tym wypadku przestrzenne rozkłady maksymalnych
głębokości (rys. 7.3), maksymalnych prędkości przepływu (rys. 7.4) oraz minimalnych
czasów wystąpienia zatopienia obszaru przepływu (rys. 7.5).

Symulacje numeryczne hydrodynamiki przepływu powodziowego mogą dostarczyć
żeby szczególne informacji o ewolucji zalewu w czasie. Tego typu dane mogą być przy-
datne w trakcie budowy systemów ostrzegania przed powodzią oraz wykonywania planów
ewakuacyjnych.

Rys. 7.3. Rozkład maksymalnych głębokości po czasie \(t = 300 \) s

![Rys. 7.3. Rozkład maksymalnych głębokości po czasie t = 300 s](image-url)
W przypadku prezentowanego zadania nie jest to istotne ze względu na bardzo krótki czas trwania procesu zalania całego obszaru zalewowego (5 minut), jednak w celu informacyjnym na rysunkach 7.6, 7.7 i 7.8 przedstawiono przykładowe zasięgi zalewu w trzech...
wybranych chwilach po przerwaniu obwałowania. W sytuacjach, gdy czas przemieszcza-
nia się fali wezbraniowej w terenie zalewowym byłby wystarczający do podjęcia decyzji,
tego typu dane można spożytkować w celu wykonania planów i wyznaczenia dróg ewa-
kuacyjnych.

Rys. 7.6. Zasięg zalewu i rozkład głębokości po czasie \(t = 30 \) s

Rys. 7.7. Zasięg zalewu i rozkład głębokości po czasie \(t = 60 \) s
Numeryczna symulacja powodzi na zabudowanym terenie zalewowym ...

Rys. 7.8. Zasięg zalewu i rozkład głębokości po czasie \(t = 180 \, \text{s} \)

Analizując rozkłady głębokości dla poszczególnych momentów symulacji, można zauważyć, że fala powodziowa, wdzierając się przez wyrwę w wale na teren zalewowy, przemieszcza się zgodnie z morfologią terenu. Wyraźny jest też wpływ zabudowy na kierunki propagacji fali i kształt obszaru zalewu. Układ pierwszego rzędu zabudowy istotnie zmienia główny kierunek przepływu.

Rys. 7.9. Szczegół pola głębokości i prędkości po czasie \(t = 180 \, \text{s} \)
7.2. Zalew rzeczywistego terenu zabudowanego

Na rysunku 7.9 pokazano rozkład głębokości i kierunki przepływu w rejonie bezpośrednio sąsiadującym z wyrwą po czasie \(t = 180 \) s. Przed pierwszym rzędem budynków widoczny jest znaczący przyrost głębokości. Układ budynków spowodował także wyraźną zmianę kierunku przepływu z równoległego do osi wyrwy na równoległy do linii zabudowy. Lokalnie, między budynkami, widoczne są strefy gwałtownych przyspieszeń, którym towarzyszą depresje zwierciadła. W licznych miejscach, blisko budynków, występują cyrkulacje i strefy martwe.

Oprócz przedstawionych w tym rozdziale sposobów wykorzystania symulacji numerycznych przepływu wody do opracowywania map zagrożenia powodziowego, szczególne wyniki obliczeń lokalnych zmian parametrów przepływu w rejonie zabudowy, można wykorzystać do oceny oddziaływania powodzi na konstrukcje budynków. Na podstawie wartości głębokości i prędkości w okolicach wybranego budynku można na przykład, wykorzystując podstawowe równania hydrauliki, wnioskować o parciu hydrostatycznym i hydrodynamicznym oraz silę wyporu działających na bryłę budynku.

7.2. Zalew rzeczywistego terenu zabudowanego
– Saska Kępa w dolinie Wisły w Warszawie

W celu zaprezentowania możliwości wykorzystania opracowanego modelu hydrodynamicznego, wspomagającego systemem GIS, wykonano prognozę zalewu istniejącego, zabudowanego terenu zawala po awarii obwałowania rzeki Wisły w okolicach Saskiej Kępy w Warszawie (rys. 7.10).

Rys. 7.10. Zdjęcie lotnicze doliny Wisły w okolicy Saskiej Kępy (Ostrowski, 2006)
Przedstawione symulacje numeryczne zostały poprzedzone badaniami zasięgu zalewu Warszawy (Magnuszewski i in., 2005) dla wody tysiącletniej $Q_{0.1\%} = 9960$ m3/s i stuletniej $Q_{1\%} = 7214$ m3/s (Wierzbicki, 2001), w których wykorzystano jednowymiarowy model przepływu ustalonego oraz system GIS. Na podstawie wyników otrzymywanych z modelu jednowymiarowego wyznaczono potencjalne strefy zagrożenia powodziowego Warszawy w okolicach Łomianek (odcinek rzeki od km 525,7 do km 542,0), Saskiej Kępy (odcinek rzeki od km 501,5 do km 512,0) oraz Wilanowa (odcinek rzeki od km 495,0 do km 511,0).

Numeryczny model terenu, niezbędny do obliczeń przepływu dwuwymiarowego, wykonano na Wydziale Geografii i Studiów Regionalnych Uniwersytetu Warszawskiego (Gutry-Korycka, 2005). Model ten, o rozdzielczości 20×20 m, powstał po opracowaniu następujących danych:
- wyniki sondowania koryta Wisły – udostępnione przez RZGW w Warszawie,
- fotogrametryczny model międzywału Wisły – wykonany przez Okręgowe Przedsiębiorstwo Geodezji i Kartografii w Lublinie,
- rzędne korony wałów – udostępnione przez RZGW w Warszawie,
- numeryczny model terenu – wykonany przez Biuro Geodety Województwa Mazowieckiego.

Rys. 7.11. Numeryczny model rzeźby terenu doliny Wisły w okolicach Warszawy (Jaworski i Marcinkowski, 2005)
Opracowany na ich podstawie model terenu miasta zawiera zarówno informacje o rzeźbie terenu (rys. 7.11), jak również dane o pokryciu i zagospodarowaniu terenu, które wykorzystano do przygotowania przestrzennego rozkładu współczynnika szorstkości obszarów potencjalnego zalewu powodziowego (rys. 7.12). W trakcie tworzenia modelu szorstkości terenu przyjęto następujące wartości współczynnika Manninga (Jaworski i Marcinkowski, 2005): koryto Wisły \(n = 0.02 \, \text{m}^{-1/3} \text{s} \), ciągu komunikacyjne \(n = 0.021 \, \text{m}^{-1/3} \text{s} \), obszary rolne \(n = 0.04 \, \text{m}^{-1/3} \text{s} \), zieleń miejska \(n = 0.045 \, \text{m}^{-1/3} \text{s} \), tereny przemysłowe i sportowe \(n = 0.048 \, \text{m}^{-1/3} \text{s} \), obszary zabudowy wielorodzinnej \(n = 0.051 \, \text{m}^{-1/3} \text{s} \), nieużytki i ogródki działkowe \(n = 0.055 \, \text{m}^{-1/3} \text{s} \), obszary zabudowy jednorodzinnej \(n = 0.06 \, \text{m}^{-1/3} \text{s} \), lasy \(n = 0.12 \, \text{m}^{-1/3} \text{s} \), zarośla wiklinowe \(n = 0.15 \, \text{m}^{-1/3} \text{s} \). Przyjęte wartości odpowiadają współczynnikom szorstkości podawanym przez Chowa (1959).

Analiza wyników uzyskanych na podstawie jednowymiarowych obliczeń hydraulicznych, układu form koryta i równiny zalewowej, a także przegląd literatury wskazywały na potrzebę wykonania dokładniejszych dwuwymiarowych analiz przepływu w miejscach, w których zidentyfikowano zagrożenie przerwania obwałowania rzeki w trakcie długo utrzymujących się wysokich stanów, odpowiadających wodzie 100- i 1000-letniej.

Opracowany model hydrodynamiki wykorzystano do symulacji propagacji fali wezbraniowej na zawału prawobrzeżnego obwałowania Wisły w rejonie dzielnicy Saska Kępa.
Obszar ten jest zlokalizowany między istniejącym a starym korytem Wisły, które obecnie odcięte jest od rzeki walem. Miejsce potencjalnego przerwania obwałowania założono w 508,0 km rzeki. Granice analizowanego w przykładzie obszaru przepływu powodziowego, przedstawionego na rysunku 7.13, przyjęto tak, aby obejmowały obszar wyznaczonego wcześniej maksymalnego zasięgu terenów zalewowych dla wody Q₀,1%. Brzeg obszaru obliczeniowego, położony wzdłuż linii wału przeciwpowodziowego (wyłączając wyrwę), przyjęto w obliczeniach jako zamknięty. Pozostałe brzegi (exampleInputEmail) w obwałowaniu) traktowano jako otwarte. Jako warunek początkowy założono brak wody na całej powierzchni potencjalnego obszaru zalewu.

W celu wykonania symulacji przepływu, obszar pokryto siatką złożoną z 15278 trójkątnych elementów (rys. 7.14). Siatka tego typu pozwala lokalnie dostosowywać jej gęstość w miejscach o szczególnym znaczeniu, na przykład w pobliżu symulowanej wyrwy w wałe przeciwpowodziowym. W sąsiedztwie wału długość boków elementów wynosiła 20 m i rosla do 250 m w okolicy pozostałych brzegów obszaru obliczeniowego.

![Rys. 7.13. Granice obszaru obliczeniowego (linia czerwona) wraz z zasięgiem zalewu dla Q₀,1% (linia niebieska)](image)

Rzeka Wisła nie została ujęta w obliczeniach. Przyjęto, że w obwałowaniu, w wyniku awarii, pojawi się wyrwa o wysokości równej wysokości wału i długości 100 m. Proces powstania i kształtowania się wyrwy nie był analizowany. Założono nagle i całkowite zniszczenie wału na przyjêtej odcinku. W wyrwie założono stały – w czasie trwania symulacji – poziom zwierciadła wody, przyjmując tam rzędę 85,38 m n.p.m., odpowiadającą przepływowi o prawdopodobieństwie przekroczenia p = 1% Przyjęte uproszczenia przebiegu awarii oznaczają, że w obliczeniach założono najgorszy, mało prawdopodobny, scenariusz katastrofy. Oznacza to, że uzyskane w ten sposób wyniki transformacji fali spiętrzenia
na obszarze zalewowym przedstawiają skrajnie pesymistyczny wariant powodzi. Wprowadzenie do obliczeń analizy ewolucji kształtu wyrwy, związane z uwzględnieniem obniżania się zwierciadła wody rzeki w trakcie symulacji, jest oczywiście możliwe, ale wymagałoby przeprowadzenia szczegółowej analizy geotechnicznej wału na przyjętym odcinku. Jednocześnie uwzględnienie tego elementu w symulacji osłabiłoby hydrauliczne skutki potencjalnej awarii, co nie wydaje się pożądane w procesie wyznaczania stref zagrożenia powodziowego.

Obliczenia przeprowadzono z krokiem czasowym $\Delta t = 1$ s, a całkowity czas symulacji wynosił 12 h. Wpływ zabudowy terenu na ruch wody wypływającej z wyrwy w wałę uwzględniono w obliczeniach odmiennie niż w poprzednim zadaniu. W skali całego zapatrywanego w przykładowie obszaru zalewu, budynki są tak małymi obiektami, że nie można było każdego z nich odwzorować indywidualnie przez wyłączenie jego powierzchni z obszaru obliczeniowego. W zadaniu założono, że wpływ zabudowy będzie symulowany przez podanie wyższej od przeciwnik wartości współczynnika szorstkości. Dla wydzielonych obszarów zwartej zabudowy przyjęto $n = 0,1$ m$^{-1/3}$.

Przykładowe wyniki symulacji numerycznej przedstawiono na rysunkach od 7.15 do 7.19. Na pierwszych dwóch (rys. 7.15 i 7.16) pokazano zmiany pola głębokości i zasięgu zalewu w czasie. Jako przykład rozwoju zalewu powodziowego wybrano dwa momenty – po trzech i sześciu godzinach od chwili przerwania obwałowania. Analizując obraz przestrzenny zmienności zalewu można zauważyć, że fala powodziowa wdziera się przez wyrwę w wałę na teren zalewowy przemieszcza się zgodnie z kształtem rzeźby terenu, zalewając obszary położone wzdłuż wałów przeciwpowodziowych, zarówno poniżej, jak i powyżej założonego wyłomu.
Uzupełnieniem informacji o przebiegu przepływu w czasie jest rozkład przestrzenny stref czasowych zalewu falą powodziową. Taki rozkład pokazano na rysunku 7.17. Kolorowe obszary reprezentują na zewnątrz stref, których czas zatopienia warstw wody przekraczającą założoną głębokość 0,1 m jest krótszy niż odpowiednio 15, 30, 45 minut i 1, 2,
7.2. Zalew rzeczywistego terenu zabudowanego … 135

6, 12 godzin. Przedstawiony obraz jest dobrą podstawą do opracowania planów i dróg ewakuacyjnych w przypadku zagrożenia miasta powodzią.

Na rysunkach 7.18 i 7.19 przedstawiono rozkład maksymalnych wartości podstawowych parametrów przepływu, jakimi są głębokość i prędkość wody przemieszczającej się po obszarze zalewowym. Grubość warstwy wody zalewającej obszar zawała, zgodnie z rzeźbą terenu, przekracza lokalnie 3 m. W trakcie symulacji największą prędkość przepływu, przekraczającą 1 m/s, odnotowano w bezpośrednim sąsiedztwie wyrwy oraz miejscowo wzdłuż starego koryta Wisły.

WYRWA

Uzyskany przestrzenny obraz zalewu można porównać z zasięgiem zalewu dla wody 100-letniej, wyznaczonym na podstawie obliczeń przeprowadzonych jednowymiarowym modelem przepływu ustalonego (Magnuszewski i in., 2005), zaznaczonym na rysunku 7.18 w postaci niebieskiej linii. Porównanie to pozwala wyciągnąć wniosek, że jednowymiarowy model ruchu ustalonego daje dość dobre przybliżenie zasięgu strefy zalewowej, choć jednocześnie nie zapewnia możliwości oceny przebiegu powodzi w czasie. Nie uwzględnia on także lokalnych obniżeń terenu, takich jak np. starorzecza, mogące retencyjnie wpływać na jakość uzyskiwanych wyników. Wymienionych wad pozbawiony jest natomiast model dwuwymiarowy, który lepiej odwzorowuje ukształtowanie terenu i uwzględnia efekt retencjonowania wody na powierzchni terenu.

Przedstawione wyniki obliczeń można wykorzystać do oceny wielkości strat, jakie wywołać może przerwanie wałów w czasie przepływu o zadanej prawdopodobieństwie wystąpienia, przy różnego rodzaju intensywności zabudowy obszarów zalewowych. W tym celu informację o głębokości warstwy wody w strefie zalewowej można porównać z informacją o wysokości budynków. Analiza uzyskanych danych pozwala również wskazać miejsca niebezpieczne dla lokalizacji zabudowy, co może być pomocne w tworzeniu planów zagospodarowania miasta.
Rys. 7.18. Rozkład maksymalnych głębokości po czasie $t = 12$ h wraz z zasięgiem zalewu wody 100-letniej (linia niebieska) (Magnuszewski i in., 2005)

Rys. 7.19. Rozkład maksymalnych prędkości po czasie $t = 12$ h
ROZDZIAŁ 8

PODSUMOWANIE I WNIOSKI

W rozprawie opisano wyniki wykonanych przez autora badań, dotyczących modelowania przepływów powodziowych na terenach zabudowanych. Analizowano warunki powierzchniowego przepływu wody, występującego w następstwie przerwania wałów przeciwpowodziowych na obwałowanych i zabudowanych terenach zalewowych.

W monografii przedstawiono opracowaną przez autora metodę prognozowania hydraulicznych skutków gwałtownego, szybkozmiennego przepływu powierzchniowego na obszarze zabudowanym. Opracowany model matematyczny przepływu opisuje dwuwymiarowy, płaski ruch wolno- i szybkozmienny, odtwarzając proces propagacji wezbraniów na obwałowanych i zabudowanych terenach zalewowych.

Ponieważ opracowany model okazał się wiarygodny i skuteczny, zastosowano go do symulacji przejścia fali powodziowej wywołanej nagłym przerwaniem obwałowania Wisły w Warszawie. Na podstawie wykonanych obliczeń określono granice strefy zagrożenia powodziowego dla wody stuletniej w dolinie Wisły w rejonie Saska Kępy.

Przeprowadzone badania laboratoryjne i numeryczne umożliwiły sformułowanie następujących wniosków, dotyczących obliczeń hydraulicznych i przebiegu zjawiska przejęcia fali spieniężenia przez teren zabudowany.

— Przepływ fali spieniężenia przez obszar zabudowany ma charakter szybkozmienny o złomowanej strukturze (zwykle trójwymiarowej), z dużą liczbą miejscowych zjawisk hydrolicznych, takich jak stacjonarne i ruchome odsokły hydrauliczne, odbicia i załamania fal, cyrkulacje i strefy martwe. Mimo trójwymiarowego charakteru przepływu wody występującego w sąsiedztwie zabudowy, do modelowania przepływu powodziowego na terenach zurbanizowanych można przyjąć dwuwymiarowe równania wody płynkiej (dwuwymiarowy model de Saint-Venant), zapisane w formie zachowawczej.
Zastosowanie równań de Saint-Venanta do opisu propagacji fali spiętrzenia na zabudowanym terenie zalewowym (chociaż nie są one pełnym modelem przepływu ze swo-
bodną powierzchnią) umożliwia uzyskanie wyników obliczeń zgodnych z pomiarami. Model nie odwzorowuje struktury zjawisk lokalnych, ale dobrze odtwarza główne ce-
chy przepływu, takie jak spiętrzenia, depresje zwierciadła, odbicia fal, odsłoki hydra-
liczne, strome fronty, cyrkulacje i strefy martwe. Można go zatem uznać za wiarygodny

Stwierdzono rozbieżności zaobserwowanych i obliczonych prędkości przemieszczania się ruchomych nieciągłości zwierciadła wody, takich jak wędrujące odsłoki hydra-
liczne. Wykazano, że w strefie bliskiej tworzącej się nieciągłości przepływu, gdzie następuje przejście z ruchu silnie rwącego do spokojnego, pominięcie w modelu ruchu płaskie-
go złożonej struktury przestrzennej odsoku może prowadzić do niedokładności obliczeń. Jednocześnie, przypuszczalną przyczyną niezgodności zmierzonych i obliczo-
nych prędkości przemieszczania się nieciągłości jest przyjęcie stałej wartości współczyn-
nika szorstkości terenu, bez względu na rodzaj ruchu i wartość gęboczki.

Obliczone wewnątrz obszarów zabudowanych gęboczką wody były często nieznacznie zamięte. Przyczyną tego jest prawdopodobnie zbyt mała wartość oporów przepływu, ujęta w modelu hydrodynamiki, w którym uwzględniono jedynie szorstkość dna terenu, natomiast zaniedbano lokalne straty energii wywoływane przez samą zabudowę. W przyjętym równaniu nie uwzględniono także chropowatości ścian budynków. Wy-
daje się, że uzupełnienie modelu o te elementy mogłoby poprawić dokładność obliczeń.

W modelowaniu przepływów wody przez obszary zabudowane można stosować różne techniki reprezentacji budynków. Podstawową i najdokładniejszą metodą jest wyłącza-
nie powierzchni poszczególnych zabudowań z obszaru przepływu. W przypadku szyb-
kozmiennego przepływu wody między budynkami zadowalające wyniki można również otrzymać, modyfikując w trakcie obliczeń wartości współczynnika szorstkości w obrę-
bie budynków dołączonych do obszaru przepływu. Technika ta, zmieniając parametry hydrauliczne fikcyjnie powiększonego obszaru przepływu, zakłada jednak bilans ma-
sy i pędu, a także w niektórych przypadkach może być nieskuteczna i prowadzić do błędów.

Stwierdzone rozbieżności wyników obliczeń i pomiarów oraz wykazane ograniczenia modelu de Saint-Venanta nie wykluczają możliwości stosowania opracowanej metodyki obliczeń w praktyce, gdyż ich głównym celem jest dostarczenie ogólnych informacji o podstawowych parametrach zalewu, przydatnych przede wszystkim do:

- wyznaczania lokalnych stref zagrożenia powodziowego w przypadku awarii zabudo-
wy hydrotechnicznej cieków z zabudowanymi terenami zalewowymi,
- przygotowania planów i dróg ewakuacji mieszkańców z zagrożonych obszarów,
- oceny ryzyka związanego z powodzią w mieście,
- oceny wielkości strat, jakie może wywołać awaria wałów przeciwpowodziowych,
- szacowania wpływu powodzi na zabudowę i określania powodowanych przez to uszkodzeń budynków,
- kontrolowania rozwoju zabudowy na terenach zagrożonych powodzią,
- opracowywania systemów ubezpieczeń.
PODZIĘKOWANIA

Opisane w rozprawie badania zostały w znacznej części sfinansowane przez Ministerstwo Nauki i Szkolnictwa Wyższego w ramach projektu badawczego 2 P06S 034 29.

Pragnę podziękować Władzom Wydziału Inżynierii Ładowej i Środowiska Politechniki Gdańskiej za finansowe i organizacyjne wsparcie moich badań laboratoryjnych przeprowadzonych w Laboratorium Hydrauliki i Inżynierii Środowiska, które stały się jednym z podstawowych elementów przedstawionej rozprawy. Dzięki równe za przyznaną mi pomoc finansową w postaci stypendium oraz zmniejszenie obciążenia dydaktycznego, co istotnie przyspieszyło zakończenie badań.

Serdzecznie dziękuję Panu Profesorowi Romualdowi Szymkiewiczowi za niezmiernie cenne opinie dotyczące obliczeń numerycznych przedstawionych w rozprawie, a także za celne uwagi redakcyjne, które wzbogaciły i uporządkowały tekst niniejszej pracy.

Jestem bardzo wdzięczny wszystkim koleżankom i kolegom z Katedry Hydrauliki i Hydrologii WILiŚ PG za stworzenie wspaniałej atmosfery pracy, motywującej moje działania naukowe.

Bardzo dziękuję również mojej rodzinie, szczególnie zionię i synom, za cierpliwość, zrozumienie i nieustanny doping do pracy. Bez ich wsparcia powstanie tej rozprawy byłoby niemożliwe.

Autor

Douben N., Verhagen J.: Urban flash flood mitigation in emerging and least developed countries; a research agenda and learning programme. XXXI IAHR Congress, Seul, Korea 2005.

Todini E.: An operational decision support system for flood risk mapping, forecasting and management. Elsevier, Urban Water 1, 1999, s. 131–143.

MODELOWANIE FAL POWODZIOWYCH NA TERENACH ZABUDOWANYCH

W pracy opisano wyniki badań, dotyczących modelowania przepływów powodziowych na terenach zabudowanych. Analizowano warunki powierzchniowego przepływu wody, występującego w następstwie przerwania wałków przeciwpowodziowych na obwałowanych i zabudowanych terenach zalewowych.

Głównym celem pracy było roszczerzenie wiedzy o przebiegu nagłych zalewów na terenach zabudowanych oraz opracowanie odpowiednich metod przewidywania hydraulicznych skutków propagacji fal powodziowych na takich obszarach. W pracy przedstawiono metodę prognozowania hydraulicznych skutków gwałtownego, szybkozmiennego przepływu powierzchniowego na obszarze zabudowanym. Opracowany model matematyczny przepływu opisuje dwuwymiarowy, płaski ruch wodny i szybkozmienny, odtwarza proces propagacji wodną w obszarach wcześniej niepokrytych wodą, w warunkach zabudowy obszaru przepływu oraz znaczącej deniwelacji i zróżnicowanej pokrycia terenu. Do matematycznego opisu nieustalonego przepływu powierzchniowego przyjęto dwuwymiarowe równania płynące, które rozwiązano numerycznie metodą skończonych.

W pracy szczegółowo opisano weryfikację modelu na podstawie wyników obliczeń i pomiarów laboratoryjnych. W tym celu zbudowano w Laboratorium Hydrauliki i Inżynierii Środowiska Politechniki Gdańskiej stanowisko pomiarowe, umożliwiające badanie przepływu w obszarze zalewowym o zmiennej konfiguracji zabudowy. Badania laboratoryjne objęły rozpoznawanie charakterystycznych cech fali powodziowej na obszarze zabudowanym oraz zjawisk hydraulicznych towarzyszących gwałtownemu i szybkozmiennemu przepływowi wody. W trakcie eksperymentów mierzone były zmiany głębokości, które porównywano z wynikami symulacji numerycznych. W wyniku przeprowadzenia badań eksperymentalnych, przepływ w bezpośrednim sąsiedztwie terenu zabudowanego zidentyfikowano jako szybkozmienny o złożonej strukturze z dużą liczbą miejscowych efektów hydraulicznych, takich jak stacjonarne i ruchome odskoki hydrauliczne, odbicia i załamania fal, cyrkulacje i strefy martwe.

Ponieważ opracowany model okazał się, mimo wykazanych w pracy ograniczeń, wiarygodny i skuteczny, zastosowano go do symulacji przejścia fali powodziowej wywołanej nagłym przerwaniem obwałowania Wisły w Warszawie. Na podstawie wykonanych obliczeń określono granice strefy zagrożenia powodziowego dla wody stuletniej w dolinie Wisły w rejonie Saskiej Kępy.

Przeprowadzone badania oraz opracowana metodyka obliczeń – prócz wartości poznawczych – mają zastosowania praktyczne. Możliwość prognozowania skutków gwałtownych i nagłych powodzi na obszarach bezpośrednio zagrożonych gwałtownym zalewem, może być przydatna między innymi do:

- wyznaczania lokalnych stref zagrożenia powodziowego w przypadku awarii zabudowy hydrotechnicznej cieków z zabudowanymi terenami zalewowymi,
- przygotowania planów i dróg ewakuacji mieszkańców z zagrożonych obszarów,
- oceny ryzykawiązanego z powodzią w mieście,
- oceny wielkości strat, jakie może wywołać awaria wałów przeciwpowodziowych,
- szacowania wpływu powodzi na zabudowę i określenia powodowanych przez to uszkodzeń budynków,
- kontrolowania rozwoju zabudowy na terenach zagrożonych powodzią,
- opracowywania systemów ubezpieczeń.
MODELLING OF FLOOD WAVES IN URBAN AREAS

In the paper the results of modelling of flood waves in urban areas are presented. The free surface water flow in embanked and built-up river floodplains after dikes failures are investigated in the research.

The main scientific aim of the research was to advance the knowledge and understanding of hydraulic consequences and effects occurring in urban area during extreme flooding. The mathematical model of flow was described in the paper in details. The model of overland flow was based on Shallow Water Equations (SWE). It properly represents the flow interaction with local urban structures, bed roughness and wetting and drying processes. The solution of assumed flow model required to develop specific numerical techniques. Concerning extreme nature of rapidly varied overland urban flooding flow the Finite Volume Method (FVM) was used for numerical integration of model equations.

The model verification was presented in the paper. It was achieved by combination of physical and mathematical modelling work. The former has required to carry out a set of laboratory experiments. For laboratory modelling of urban flood flow the test stand was built in hydraulic laboratory of Gdansk University of Technology. In the first part of laboratory research, investigation and defining the hydraulic characteristics of flow in urban areas were realized. During experiments the water depth was measured. Then, the measurements were compared with results of numerical simulations. Laboratory and mathematical modelling allow to define the flow in urban area as rapidly varied flow of complex structure with numerous local effects like bores, hydraulic jumps, wave reflections and circulations zones.

The verification showed that the model of flood flow is reliable and effective despite some limitations analysed in the paper. Therefore, it was used for modelling the urban flood in Warsaw after Vistula river embankment potential break. Computational results were used to estimate the range of flood risk zone in Vistula valley in vicinity of Saska Kepa district.

The practical aim of the research was to create a computational tool for predicting of complex extreme water flow in urban area. The developed predictive model can be useful for example to:

— estimate flood risk maps,
— construct decision support tools and prepare emergency plans by the local authorities,
— assess of risk from the failures of water controls structures or natural flood events by municipal planers and analysts,
— estimate economic and environmental damages,
— analyse the flood influence on buildings and determine failures of urban structures,
— control city development in potential inundation zones,
— specify insurance premiums.